Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 6, pp 551–562 | Cite as

Cyclicity of Long-Term Population Dynamics in Dragonflies of the Genus Sympetrum (Odonata, Anisoptera) in the Basin of Lake Chany

  • O. N. PopovaEmail author
  • A. Yu. Haritonov
  • L. N. Erdakov
Article
  • 12 Downloads

Abstract

This work is directed at continuous studies of cyclicity of long-term (1980–2010) population dynamics of odonates in the basin of Lake Chany (in the south of Western Siberia). Four sympatric species of the genus Sympetrum have been investigated by spectral analysis method. The cycle spectra of population dynamics have been constructed for each species; the basic parameters of these cycles (period, phase, and power) have been calculated. Special number cycles have been found for each species. Interspecies differences increased in the direction from high to low frequencies of the spectrum. In the cases of similar cycles, interspecies differences have been shown in the ratio of cycle powers and/or phases: identical phases can indicate the ability of species to increase their number synchronously with any of close species; different phases can indicate the possibility of a small-numbered species to reach its maximum number against the minimum number of numerous species. A comparison of sympatric species spectra of the genera Coenagrion and Sympetrum has led to the conclusion that, the more similarity there is in environmental standards among species inside a genus (as for Sympetrum), the more specific the species frequency spectra are. All species of the genus Sympetrum can synchronize their number fluctuations with 2- to 3 and 4- to 5-year fluctuations of the local climate. Also specific synchronization with important nature-climatic rhythms was found for each species: for S. danae, with an 18-year rhythm of the level of Lake Chany and with a 16-year rhythm of June temperatures; for S. flaveolum, with a 24-year Brickner cycle, with an 8-year cycle of rainfall, and with a 28-year cycle of April and May temperatures; for S. vulgatum, with a 40- to 42-year cycle of the level of Lake Chany, with 12-year cycle of rainfall, and with a 7-year cycle of April and June temperatures; and for S. sanguineum, with a 7-year cycle of April and June temperatures. Perhaps the adaptation mechanism of species to each other and to environments is enclosed in the cyclicity of long-term fluctuations of species number.

Keywords

Odonata Sympetrum spp. long-term population dynamics population cycles spectral analysis Western Siberia Lake Chany basin Barabinsk forest steppe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, R.A., Mill, P.J., and Zawal, A., Mites on Zygoptera, with particular reference to Arrenurus species, selection sites and host preferences, Odonatologica, 2007, vol. 36, no. 4, pp. 339–347.Google Scholar
  2. Baker, R.L., Elkin, C.M., and Brennan, H.A., Aggressive interactions and risk of fish predation for larval damselflies, J. Insect Behav., 1999, vol. 12, no. 2, pp. 213–223.CrossRefGoogle Scholar
  3. Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations and Communities, Oxford: Blackwell, 1986.Google Scholar
  4. Belyshev, B.F., Haritonov, A.Yu., Borisov, S.N., et al., Fauna i ekologiya strekoz (Fauna and Ecology of Dragonflies), Novosibirsk: Nauka, 1989.Google Scholar
  5. Benard, M.F. and McCauley, S.J., Integrating across lifehistory stages: consequences of natal habitat effects on dispersal, Am. Nat., 2008, vol. 171, pp. 553–567.Google Scholar
  6. Bjørnstad, O.N., Stenseth, N.C., Saitoh, T., and Lingjserde, O.C., Mapping the regional transition to cyclicity in Clethrionomys rufocanus: spectral densities and functional data analysis, Res. Popul. Ecol., 1998, vol. 40, no. 1, pp. 77–84.CrossRefGoogle Scholar
  7. Chernyavskii, F.B. and Lazutkin, A.N., Tsikly lemmingov i polevok na Severe (Cycles of Lemmings and Voles in the North), Vladivostok: Inst. Biol. Probl. Sev., Dal’nevost. Otd., Ross. Akad. Nauk, 2004.Google Scholar
  8. Conrad, K.F., Willson, K.H., Whitfield, K., Harvey, I.F., Thomas, C.J., and Sherratt, T.N., Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, sex, size, morph, and ectoparasitism, Ecography, 2002, vol. 25, pp. 39–45.CrossRefGoogle Scholar
  9. Corbet, P.S., Dragonflies: Behavior and Ecology of Odonata, Colchester: Harley Books, 1999.Google Scholar
  10. Dingemanse, N.J. and Kalkman, V.J., Changing temperature regimes have advanced the phenology of Odonata in the Netherlands, Ecol. Entomol., 2008, vol. 33, pp. 1–9.CrossRefGoogle Scholar
  11. Doganovskii, A.M., Water level regime of lakes as an integral indicator of climatic and ecological changes, Terra Humana, 2007, no. 1, pp. 103–110.Google Scholar
  12. Dronzikova, M.V., Behavior of Libellula quadrimaculata (Linnaeus, 1758) larva (Odonata, Libellulidae) and its modification during ontogenesis, Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 255–262.Google Scholar
  13. Duvanova, I.A., Khitsova, L.N., Medosekin, Yu.V., and Drozdova, V.F., Population analysis of dynamics of the field mouse (Apodemus agrarius Pall., 1777) population in Lipetsk oblast, Povolzhskii Ekol. Zh., 2009, no. 1, pp. 26–34.Google Scholar
  14. Ekologiya ozera Chany (Ecology of the Chany Lake), Novosibirsk: Nauka, 1986.Google Scholar
  15. Erdakov, L.N., Biologicheskie ritmy i printsypy sinkhronizatsii v ekologicheskikh sistemakh (khronoekologiya) (Biological Rhythms and Principles of Synchronization in Ecological Systems: Chronoecology), Tomsk: Tomsk. Gos. Univ., 1991.Google Scholar
  16. Erdakov, L.N., Biologicheskie ritmy: osob’, populyatsiya, soobshchestvo. Tsiklichnost’ v zhivykh sistemakh (Biological Rhythms: A Species, Population, and Community. Cyclicity in Living Systems), Saarbrucken: LAMBERT Academic, 2011.Google Scholar
  17. Fefelov, I.V., Dynamics of ornithological fauna in the Selenga River delta: ecology, problems, and prospects, Vestn. Buryat. Gos. Univ., Ser. 2: Biol., 1999, no. 2, pp. 40–51.Google Scholar
  18. Harabiš, F. and Dolný, A., Ecological factors determining the density-distribution of Central European dragonflies (Odonata), Eur. J. Entomol., 2010, vol. 107, pp. 571–577.CrossRefGoogle Scholar
  19. Harcourt, D.G., Population dynamics of Leptinotarsa decemlineata (Say) in eastern Ontario, Can. Entomol., 1971, vol. 103, pp. 1049–1061.CrossRefGoogle Scholar
  20. Haritonov, A.Yu., Boreal Odonata fauna and ecological factors of geographical distribution of dragonflies, Doctoral (Biol.) Dissertation, Moscow, 1991.Google Scholar
  21. Haritonov, A.Yu., Intra- and interspecies interactions of dragonflies (Insecta, Odonata) as a factor of development of species ranges and stabilization of their borders, Sib. Ekol. Zh., 1994, no. 4, pp. 321–329.Google Scholar
  22. Haritonov, A. and Popova, O., Spatial displacements of Odonata in south-west Siberia, Int. J. Odonatol., 2011, vol. 14, no. 1, pp. 1–10.CrossRefGoogle Scholar
  23. Hassall, C. and Thompson, D.J., The effects of environmental warming on Odonata: a review, Int. J. Odonatol., 2008, vol. 11, no. 2, pp. 131–153.CrossRefGoogle Scholar
  24. Hickling, R., Roy, D.B., Hill, J.K., and Tomas, C.D., A northward shift of range margins in British Odonata, Global Change Biol., 2005, vol. 11, pp. 502–506.CrossRefGoogle Scholar
  25. Hottenbacher, N. and Koch, K., Influence of egg size on egg and larval development of Sympetrum striolatum at different prey availability (Odonata: Libellulidae), Int. J. Odonatol., 2006, vol. 9, no. 2, pp. 165–174.CrossRefGoogle Scholar
  26. Katayama, M., Differential survival rates of damselfly larvae in the presence of newt and dragonfly predators, Int. J. Odonatol., 2013, vol. 16, no. 2, pp. 177–182.CrossRefGoogle Scholar
  27. Kausrud, K.L., Mysterud, A., Steen, H., Vik, J.O., Østbye, E., Cazelles, B., Framstad, E., Eikeset, A.M., Mysterud, I., Solhøy, T., and Stenseth, N.C., Linking climate change to lemming cycles, Nature, 2008, vol. 456, pp. 93–97.CrossRefGoogle Scholar
  28. Kiselev, S.V. and Yamborko, A.V., Population dynamics of Laxmann’s (Sorex caecutiens) and taiga (Sorex isodon) shrews in the Upper Kolyma River basin, Zool. Zh., 2014, vol. 93, no. 9, pp. 1106–1116.Google Scholar
  29. Korpela, K., Delgado, M., Henttonen, H., Korpimaki, E., Koskela, E., Ovaskainen, O., Pietiainen, H., Sundell, J., Gyoccoz, N., and Huitu, O., Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles., Global Change Biol., 2013, vol. 19, pp. 697–710.CrossRefGoogle Scholar
  30. Marple, S.L., Jr., Digital Spectral Analysis with Applications, Englewood Cliffs, NJ: Prentice-Hall, 1987.Google Scholar
  31. Martynyuk, V.S., Vladimirskii, B.M., and Temur’yants, N.A., Biological rhythms and electromagnetic fields of habitat, Byull. Vost.-Sib. Nauch. Tsentr, Sib. Otd., Ross. Akad. Med. Nauk, 2007, no. 2 (54), pp. 143–146.Google Scholar
  32. McCoy, M.W., Barfield, M., and Holt, R.D., Predator shadows: complex life histories as generators of spatially patterned indirect interactions across ecosystems, Oikos, 2009, vol. 118, pp. 87–100.CrossRefGoogle Scholar
  33. McPeek, M.A., Ecological factors limiting the distribution and abundances of Odonata, in Dragonflies and Damselflies, Córdoba-Aguilar, A., Ed., Oxford: Oxford Univ. Press, 2008, pp. 51–62.CrossRefGoogle Scholar
  34. McPeek, M.A. and Peckarsky, B.L., Life histories and the strengths of species interactions: combining mortality, growth, and fecundity effects, Ecology, 1998, vol. 79, pp. 867–879.CrossRefGoogle Scholar
  35. Monitoring climatic change with dragonflies, BioRisk, 2010, vol. 5.Google Scholar
  36. Nikol’skii, G.V., Modern problems in analysis of population dynamics of the animals, Zool. Zh., 1965, vol. 45, no. 8, pp. 971–983.Google Scholar
  37. Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1974.Google Scholar
  38. Pierce, C.L. and Crowley, P.H., Behavior and ecological interactions of larval Odonata, Ecology, 1985, vol. 66, no. 5, pp. 1504–1512.CrossRefGoogle Scholar
  39. Poole, R.W., An Introduction to Quantitative Ecology, Series in Population Biology, New York: McGraw-Hill, 1974.Google Scholar
  40. Popova, O.N., Dragonflies of the genus Sympetrum, Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1999.Google Scholar
  41. Popova, O.N., The influence of climate on the resettlement and periods of flying of dragonflies of the genus Sympetrum, Vestn. Chelyab. Gos. Pedagog. Univ., Ser. 10: Ekol. Valeol. Pedagog. Psikhol., 2001a, no. 2, pp. 24–33.Google Scholar
  42. Popova, O.N., Dependence of distribution of dragonflies of genus Sympetrum on properties of larval habitats, Belyshevia, 2001b, vol. 1, no. 1, pp. 14–17.Google Scholar
  43. Popova, O.N., The role of interspecific interactions in the distribution of dragonflies of the genus Sympetrum (Odonata: Libellulidae), Materialy Vserossiiskoi konferentsii “Biologicheskaya Nauka i obrazovanie v pedagogicheskikh vuzakh,” 11–12 maya 2001 g. (Proc. All- Russ. Conf. “Biological Science and Education in Pedagogical Higher Education Institutions,” May 11–12, 2001), Novosibirsk, 2001c, pp. 15–22.Google Scholar
  44. Popova, O.N., The dragonfly larva population (Odonata) in a temporal water pond, Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 239–248.Google Scholar
  45. Popova, O.N. and Haritonov, A.Yu., Population dynamics and migration in the dragonfly Libellula quadrimaculata L., 1758 (Odonata, Libellulidae), Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 231–238.Google Scholar
  46. Popova, O.N. and Haritonov, A.Yu., Disclosure of biotopical groups in the population of the dragonfly Coenagrion armatum (Charpentier, 1840), Contemp. Probl. Ecol., 2014a, vol. 7, no. 2, pp. 175–181.CrossRefGoogle Scholar
  47. Popova, O.N. and Haritonov, A.Yu., Mass reproductive wanderings of dragonflies of the genus Sympetrum (Odonata, Libellulidae), Entomol. Rev., 2014b, vol. 94, no. 1, pp. 21–28.CrossRefGoogle Scholar
  48. Popova, O.N. and Smirnova, Yu.A., Community of aquatic insects in forest-steppe lakes of Baraba (south of West Siberia), Contemp. Probl. Ecol., 2010, vol. 3, no. 1, pp. 50–54.CrossRefGoogle Scholar
  49. Popova, O.N., Haritonov, A.Yu., and Erdakov, L.N., Cyclicity of long-term population dynamics in damselflies of the genus Coenagrion (Odonata, Zygoptera) in the Lake Chany basin, Russ. J. Ecol., 2016a, vol. 47, no. 1, pp. 74–81.CrossRefGoogle Scholar
  50. Popova, O.N., Haritonov, A.Yu., Anishchenko, O.V., and Gladyshev, M.I., Export of biomass and metals from aquatic to terrestrial ecosystems via the emergence of dragonflies (Insecta: Odonata), Contemp. Probl. Ecol., 2016b, vol. 9, no. 4, pp. 458–473.CrossRefGoogle Scholar
  51. Reimers, N.F., Ekologiya. Teoriya, zakony, pravila, printsipy i gipotizy (Ecology: Theories, Laws, Rules, Principles, and Hypothesis), Moscow: Rossiya Molodaya, 1994.Google Scholar
  52. Remsburg, A., Relative influence of prior life stages and habitat variables on dragonfly (Odonata: Gomphidae) densities among lake sites, Diversity, 2011, vol. 3, pp. 200–216.CrossRefGoogle Scholar
  53. Remsburg, A.J. and Turner, M.G., Aquatic and terrestrial drivers of dragonfy (Odonata) assemblages within and among north-temperate lakes, J. North Am. Benthol. Soc., 2009, vol. 28, no. 1, pp. 44–56.CrossRefGoogle Scholar
  54. Root, R.B., The niche exploitation pattern of the blue-gray gnatcatcher, Ecol. Monogr., 1967, vol. 37, pp. 317–350.CrossRefGoogle Scholar
  55. Ryazanova, G.I., Intraspecific territorial competitiveness of dragonfly larvae, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 1998.Google Scholar
  56. Sahlén, G., Haase, S., and Suhling, F., Morphology of dragonfly larvae along a habitat gradient: interactions with feeding behavior and growth (Odonata: Libellulidae), Int. J. Odonatol., 2008, vol. 11, no. 2, pp. 225–240.CrossRefGoogle Scholar
  57. Savkin, V.M., Dvurechenskaya, S.Ya., Saprykina, Ya.V., and Marusin, K.V., General hydrological-morphometric and hydrochemical characteristics of the Chany Lake, Sib. Ekol. Zh., 2005, no. 2, pp. 183–192.Google Scholar
  58. Savkin, V.M., Orlova, G.A., and Kondakova, O.V., Modern water balance of closed Chany Lake, Geogr. Prirod. Resur., 2006, no. 1, pp. 123–131.Google Scholar
  59. Serbina, E.A. and Haritonov, A.Yu., Role of dragonflies in life cycle of trematodes of family Prosthogonimidae in forest-steppe reservoirs of the south of Western Siberia, Belyshevia, 2001, vol. 1, no. 1, pp. 18–20.Google Scholar
  60. Sinclair, A.R.E., Regulation and population models for a tropical ruminant, East Afr. Wildl. J., 1973, vol. 11, pp. 307–316.CrossRefGoogle Scholar
  61. Stoks, R. and Córdoba-Aguilar, A., Evolutionary ecology of Odonata: a complex life cycle perspective, Annu. Rev. Entomol., 2012, vol. 57, pp. 249–265.CrossRefGoogle Scholar
  62. Stoks, R., De Block, M., and McPeek, M.A., Alternative growth and energy storage responses to mortality threats in damselflies, Ecol. Lett., 2005, vol. 8, pp. 1307–1316.CrossRefGoogle Scholar
  63. Suhling, F., Suhling, I., and Richter, O., Temperature response of growth of larval dragonflies—an overview, Int. J. Odonatol., 2015, vol. 18, no. 1, pp. 15–30.CrossRefGoogle Scholar
  64. Sukhacheva (Smirnova), G.A., Dragonflies and their trophic chains in forest-steppe of Western Siberia, Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1989.Google Scholar
  65. Sukhacheva, G.A., Haritonov, A.Yu., and Perevozchikova, T.Yu., Quantitative evaluation of feeding of dragonflies, Izv. Sib. Otd., Akad. Nauk SSSR, Ser. Biol. Nauki, 1988, no. 3, no. 20, pp. 3–7.Google Scholar
  66. Symonides, E., The structure and population dynamics of psammophytes on inland dunes, Ekol. Pol., 1979, vol. 27, pp. 191–234.Google Scholar
  67. Telepnev, V.G. and Erdakov, L.N. Description of population cycles of wood grouse (Tetrao urogallus L., 1758) through long-term monitoring, Contemp. Probl. Ecol., 2014, vol. 7, no. 5, pp. 530–536.CrossRefGoogle Scholar
  68. Varley, G.C. and Gradwell, G.R., Population models for the winter moth, Symp. R. Entomol. Soc. London, 1968, vol. 9, pp. 132–142.Google Scholar
  69. Wildermuth, H. and Martens, A., The feeding action of Forcipomyia paludis (Diptera: Ceratopogonidae), a parasite of Odonata imagines, Int. J. Odonatol., 2007, vol. 10, no. 2, pp. 249–255.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. N. Popova
    • 1
    Email author
  • A. Yu. Haritonov
    • 1
  • L. N. Erdakov
    • 1
  1. 1.Institute of Systematics and Ecology of Animals, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations