Contemporary Problems of Ecology

, Volume 11, Issue 6, pp 604–613 | Cite as

Structure of Ecologo-Climatic Niches of Poa palustris L. and P. nemoralis L. (Роасеае) in Asian Russia

  • M. V. OlonovaEmail author
  • T. S. Vysokikh
  • N. S. Mezina


In addition to a specific morphotype, each species has a unique ecologo-climatic niche and a geographical area. The study of ecologo-climatic and geographical divergence may significantly contribute to the comprehension of species genesis and amount. The aim of this work is to compare ecologo-climatic niches of Poa palustris L., P. nemoralis L., and populations combining the features of both species (assigned in this work to the hybridogenic complex of P. intricata Wien), as well as reveal their identity. As a result of these researches, the areas of the both species were verified. The ecologo-climatic niches were determined with the use of GIS technologies and on the basis of their coordinates. Then potential areas of species—the regions where climatic conditions are favorable for their growth—were determined on the basis of six independent bioclimatic variables. A comparison of the ecologo-climatic niches calculated by MaxEnt software has shown that their distinctions are statistically significant.


ecologo-climatic modeling MaxEnt Poa distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.P., Lew, D., and Peterson, A.T., Evaluating predictive models of species’ distributions: criteria for selecting models, Ecol. Model., 2003, vol. 162, pp. 211–232.CrossRefGoogle Scholar
  2. Brown, J.L., SDMtoolbox user guide, 2014a. Accessed April 18, 2017.
  3. Brown, J.L., SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses, Methods Ecol. Evol., 2014b, vol. 5, no. 7, pp. 694–700.CrossRefGoogle Scholar
  4. Clausen, J. and Hiesey, W.M., Experimental Studies on the Nature of Species. IV. Genetic Structure of Ecological Races, Washington, DC: Carnegie Inst. Wash., 1958, vol. 57.Google Scholar
  5. Community Structure and the Niche, Giller, P., Ed., New York: Springer-Verlag, 1984.Google Scholar
  6. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B., Manion, G., Moritz, C., Nakamura, M., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecogeography, 2006, vol. 29, pp. 129–151.CrossRefGoogle Scholar
  7. Elton, C.S., Animal Ecology, London: Sidgwick and Jackson, 1927.Google Scholar
  8. ESRI, ArcGIS Desktop and Spatial Analyst Extension: Release 10.1, Redlands, CA: Environ. Syst. Res. Inst., 2012.Google Scholar
  9. Franklin, J., Mapping Species Distributions: Spatial Inference and Prediction, Cambridge: Cambridge Univ. Press, 2009.Google Scholar
  10. Grant, V., Organismic Evolution, San Francisco: W.H. Freeman, 1977.Google Scholar
  11. Grinnell, J., The niche-relationships of the California Thrasher, Auk, 1917, vol. 34, pp. 427–433.CrossRefGoogle Scholar
  12. Hiesey, W.M. and Nobs, M.A., Genetic and transplant structure on contrasting species and ecological races of the Achillea millefolium complex, Bot. Gaz., 1970, vol. 131, pp. 245–259.CrossRefGoogle Scholar
  13. Hiesey, W.M. and Nobs, M.A., Interspecific Hybrid Derivatives Between Facultatively Apomictic Species of Bluegrasses and Their Responses to Contrasting Environments, Carnegie Institution of Washington Publication vol. 636, Washington, DC: Carnegie Inst. Wash., 1982.Google Scholar
  14. Hijmans, R.J., Cameron, S., and Parra, J., Climate date from Worldclim, 2004. Accessed September 18, 2017.Google Scholar
  15. Hijmans, R.J., Guarino, L., Jarvis, A., et al., DIVA-GIS Users manual, version 5.2., 2005. Accessed April 18, 2017.Google Scholar
  16. Hutchinson, G.E., Concluding remarks, Cold Spring Harbor Symp. Quant. Biol., 1957, vol. 22, pp. 415–422.CrossRefGoogle Scholar
  17. MacAthur, R.H., The theory of the niche, in Population Biology and Evolution, Lewontin R.C., Ed., Syracuse: Syracuse Univ. Press, 1968, pp. 159–176.Google Scholar
  18. Nix, H., A biogeographic analysis of Australian Elapid snakes, in Atlas of Elapid Snakes of Australia, Australian Flora and Fauna Series no. 7, Longmore, R., Ed., Canberra: Aust. Gov. Publ. Serv., 1986, vol. 7, pp. 4–15.Google Scholar
  19. Olonova, M.V., Poa L.—bluegrass, in Flora Sibiri (Flora of Siberia), Novosibirsk, 1990, vol. 2, pp. 163–186.Google Scholar
  20. Olonova, M.V., Population study of hybrid complexes Poa palustris L.—P. nemoralis L.—P. urssulensis Trin. in the south of Western Siberia, in Botanicheskie issledovaniya Sibiri i Kazakhstana (Botanical Studies in Siberia and Kazakhstan), Tr. Gerb. im. V.V. Sapozhnikova, Barnaul, 2001, no. 7, pp. 13–33.Google Scholar
  21. Olonova, M.V., Review of section Stenopoa of genus Poa (Poaceae) in Siberia, Bot. Zh., 2010, vol. 95, no. 6, pp. 869–881.Google Scholar
  22. Olonova, M.V., Gussarova, G.L., Brysting, A.K. and Mezina, N.S., Introgressive hybridization in mesomorphic bluegrasses, Poa section Stenopoa, in western Siberia, Ann. Bot. Fen., 2016, vol. 53, pp. 43–55.CrossRefGoogle Scholar
  23. Ozerskii, P.V., The concept of ecological niche of Elton–Odum: history of the problem, Funkts. Morfol., Ekol. Zhizn. Tsikly Zhivotn., 2013, vol. 13, no. 1, pp. 55–69.Google Scholar
  24. Peshkova, G.A., Family Poaceae or Gramineae, in Flora Tsentral’noi Sibiri (Flora of Central Siberia), Novosibirsk, 1979, vol. 1, pp. 69–139.Google Scholar
  25. Phillips, S.J., A brief tutorial on Maxent, 2011. Accessed April 18, 2017.Google Scholar
  26. Phillips, S.J. and Dudik, M., Modeling of species distribution with Maxent: new extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, pp. 161–175.CrossRefGoogle Scholar
  27. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, pp. 231–259.CrossRefGoogle Scholar
  28. Probatova, N.S., Family Poaceae or Gramineae, in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of Soviet Far East), Leningrad, 1985, vol. 1, pp. 89–382.Google Scholar
  29. Rabotnov, T.A., Fitotsenologiya (Phytocenology), Moscow: Mosk. Gos. Univ., 1983, 2nd ed.Google Scholar
  30. Ramenskii, L.G., Tsatsenkin, I.A., Chizhikov, O.N., and Antipin, N.A., Ekologicheskaya otsenka kormovykh ugodii po rastitel’nomu pokrovu (Ecological Evaluation of Fodder Resources by Vegetation Cover), Moscow: Sel’khozgiz, 1956.Google Scholar
  31. Scheldeman, X. and van Zonneveld, M., Training Manual on Spatial Analysis of Plant Diversity and Distribution, Rome: Biodiversity Int., 2010.Google Scholar
  32. Seledets, V.P. and Probatova, N.S., Ekologicheskii areal vida u rastenii (Ecological Range of the Plant Species), Vladivostok: Dal’nauka, 2007.Google Scholar
  33. Tsatsenkin, I.A., Ekologicheskie shkaly dlya rastenii pastbishch i senokosov gornykh i ravninnykh raionov Srednei Azii, Altaya i Urala (Ecological Scales for the Plants of Pastures and Hayfields of Mountain and Plains Regions of Central Asia, Altai, and Urals), Dushanbe: Donish, 1967.Google Scholar
  34. Tsvelev, N.N., Role of hybridization in evolution of grasses (Poaceae), in Istoriya flory i rastitel’nosti Evrazii (History of Flora and Vegetation of Eurasia), Leningrad, 1972, pp. 5–16.Google Scholar
  35. Tsvelev, N.N., Genus Poa L.) in USSR, Nov. Sist. Vysshikh Rast., 1974, vol. 11, pp. 24–41.Google Scholar
  36. Tsvelev, N.N., Poa L.—bluegrass, in Arkticheskaya flora SSSR (Arctic Flora of Soviet Union), Tolmachev, A.I., Ed., Moscow, 1964, no. 2, pp. 112–162.Google Scholar
  37. Warren, D.L, Glor, R.E, and Turelli, M., Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution, Evolution, 2008, vol. 62, pp. 2868–2883.CrossRefGoogle Scholar
  38. Warren, D.L., Glor, R.E., and Turelli, M., ENMTools user manual v. 1.3, 2011. Google Scholar
  39. Zink, R.M., Genetics, morphology, and ecological niche modeling do not support the subspecies status of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus), Condor, 2015, vol. 117, pp. 76–86. doi 10.1650/CONDOR-14-27.1CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Olonova
    • 1
    Email author
  • T. S. Vysokikh
    • 1
  • N. S. Mezina
    • 1
  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations