Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 5, pp 503–513 | Cite as

Microscopic Fungi of White Sea Sediments

  • A. I. Khusnullina
  • E. N. Bilanenko
  • A. V. Kurakov
Article
  • 18 Downloads

Abstract

The micromycete complex population size and taxonomic structure is determined for sediments (bottom soils) of the White Sea; species actively functioning in the littoral zone and at depths of 10–30 m are identified. The bottom-soil fungi population is pretty low (hundreds to several thousand colony-forming units (CFUs) per 1 g), while the species diversity is quite rich. In total, 70 species are identified; 90% of those are Ascomycota anamorphs (Capnodiales, Eurotiales, Hypocreales, Pleosporales, Saccharomycetales, and Incertae sedis), Zygomycota (Mucoromycota) (Mucorales and Umbelopsidales orders) constituted (8%), and the share of Basidiomycota (Agaricales order) is 2%. The actively functioning bottom-soil fungi are identified on the basis of their ability to develop on organic substrates (starch, cellulose, chitin, and pieces of laminaria thallus) and grow on seawater media at low temperatures and varying oxygen levels, i.e., under conditions similar to those observed in the studied ecotope. This fungi group includes some 20 species: Paradendryphiella salina, Acremonium tubakii, A. potronii, Pseudeurotium hygrophilum, Pseudogymnoascus pannorum, Emericellopsis sphaerospora, Oidiodendron periconioides, Parengyodontium album, Lecanicillium muscarium, and representatives of genera Tolypocladium and Sarocladium. These species are typical for marine and cold habitats; some of them are well-known chitinolytics and associates of insects and algae, and many of them are able to grow in anaerobic conditions. For some of the species (Aspergillus brasiliensis, A. sydowii, Cladosporium cladosporioides, Emericellopsis sphaerospora, Oidiodendron periconioides, Pseudeurotium hygrophilum, Tolypocladium cylindrosporum, T. tundrense, Umbelopsis vinacea, Penicillium spp., and Talaromyces spp.), this ability was discovered for the first time. Further studies are required to obtain detailed ecophysiological descriptions of marine isolates of species actively functioning in the bottom soils.

Keywords

fungi of bottom soils sediments White Sea micromycetes selective isolation methods species diversity anaerobic growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agatova, A.O., Lapina, N.M., and Torgunova, N.I., Organic matter of the White Sea, Materialy V Vserossiiskogo simpoziuma s mezhdunarodnym uchastiem “Organicheskoe veshchestvo i biogennye elementy vo vnutrennikh vodoemakh” (Proc. V All-Russ. Symp. with Int. Participation “Organic Matter and Biogenic Elements in Inland Reservoirs”), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2012, pp. 271–273.Google Scholar
  2. Andreakis, N., Høj, L., Kearns, P., Hall, M.R., Ericson, G., Cobb, R.E., et al., Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters, PLoS One, 2015, vol. 10, no. 8, p. e0136130.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arfi, Y., Marchand, C., Wartel, M., and Record, E., Fungal diversity in anoxic-sulfidic sediments in a mangrove soil, Fungal Ecol., 2012, vol. 5, no. 2, pp. 282–285.CrossRefGoogle Scholar
  4. Artemchuk, N.Ya., Mikroflora morei SSSR (Microflora of the Seas of Soviet Union), Moscow: Nauka, 1981.Google Scholar
  5. Besitulo, A., Moslem, M.A., and Hyde, K.D., Occurrence and distribution of fungi in a mangrove forest on Siargao Island, Philippines, Bot. Mar., 2010, vol. 53, no. 6, pp. 535–543.Google Scholar
  6. Bilanenko, E.N. and Grum-Grzhimaylo, O.A., The comparative analysis of the cultured micromycetes in oligotrophic peatlands of natural biosphere reservations located in the northern and central parts of Russia, Nat. Conserv. Res., 2016, vol. 1, no. 2, pp. 90–95.CrossRefGoogle Scholar
  7. Bissett, J., Notes on Tolypocladium and related genera, Can. J. Bot., 1983, vol. 61, no. 5, pp. 1311–1329.CrossRefGoogle Scholar
  8. Bubnova, E.N., Fungi in sediments of the Kandalaksha Bay (White Sea, NW Russia), Mikol. Fitopatol., 2009, vol. 43, no. 4, pp. 284–290.Google Scholar
  9. Bubnova, E.N. and Kireev, Ya.V., Fungal communities associated with brown seaweeds Fucus in the Kandalaksha Bay (White Sea, NW Russia), Mikol. Fitopatol., 2009, vol. 43, no. 5, pp. 20–29.Google Scholar
  10. Bubnova, E.N. and Konovalova, O.P., Ecophysiological features of fungi idolated from bottom sediments of the Chukchi Sea, in Bioraznoobrazie i ekologiya gribov i gribopodobnykh organizmov severnoi Evrazii (Biological Diversity and Ecology of Fungi and Fungi-Like Species in Northern Eurasia), Yekaterinburg, 2015, pp. 38–40.Google Scholar
  11. Bugni, T.S. and Ireland, C.M., Marine-derived fungi: a chemically and biologically diverse group of microorganisms, Nat. Prod. Rep., 2004. 21, pp. 143–163.CrossRefPubMedGoogle Scholar
  12. Crous, P.W., Braun, U., Schubert, K., and Groenewald, J.Z., The genus Cladosporium and similar dematiaceous hyphomycetes, Stud. Mycol., 2007, vol. 58.Google Scholar
  13. Damare, S., Raghukumar, C., and Raghukumar, S., Fungi in deep-sea sediments of the Central Indian Basin, Deep Sea Res., Part I, 2006, vol. 53, no. 1, pp. 14–27.CrossRefGoogle Scholar
  14. Dobrovol’skii, A.D. and Zalogin, B.S., Morya SSSR. Uchebnoe posobie (The Seas of Soviet Union: Manual), Moscow: Mosk. Gos. Univ., 1982.Google Scholar
  15. Domsch, K.H., Gams, W., and Anderson, T.H., Compendium of Soil Fungi, Eching: IHW-Verlag, 2007, 2nd ed.Google Scholar
  16. Gams, W., Cephalosporium-Artige Schimmelpilze (Hyphomycetes), Stuttgart: Gustav Fischer Verlag, 1971.Google Scholar
  17. Gnavi, G., Garzoli, L., Poli, A., Prigione, V., Burgaud, G., and Varese, G.C., The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga, PLoS One, 2017, vol. 12, no. 4, p. e0175941.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Golovchenko, A.V., Kurakov, A.V., Semenova, T.A., and Zvyagintsev, D.G., Abundance, diversity, viability, and factorial ecology of fungi in peatbogs, Eurasian Soil Sci., 2013, vol. 46, no. 1, pp. 74–90.CrossRefGoogle Scholar
  19. Grum-Grzhimaylo, O.A., Debets, A.J.M., and Bilanenko E.N., The diversity of microfungi in peatlands originated from the White Sea, Mycologia, 2016, vol. 108, no. 2, pp. 233–254.CrossRefPubMedGoogle Scholar
  20. Grum-Grzhimaylo, A.A., Georgieva, M.L., Debets, A.J.M., and Bilanenko, E.N., Are alkalotolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA Fungus, 2013, vol. 4, no. 2, pp. 213–228.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Index Fungorum, the global fungal nomenclature. http://www.indexfungorum.org/names/names.asp.
  22. Jones, E.B.G., Sakayaroj, J., Suetrong, S., Somrithipol, S., and Pang, K.L., Classification of marine Ascomycota, anamorphic taxa and Basidiomycota, Fungal Diversity, 2009, vol. 35, no. 1, p. 187.Google Scholar
  23. Khudyakova, Yu.V., Pivkin, M.V., Kuznetsova, T.A., and Svetashev, V.I., Fungi in sediments of the sea of Japan and their biologically active metabolites, Microbiology (Moscow), 2000, vol. 69, no. 5, pp. 608–611.CrossRefGoogle Scholar
  24. Kirtsideli, I.Yu., Soil micromycetes of Khibin mountain tundra (Kola Peninsula), Mikol. Fitopatol., 1999, vol. 33, no. 6, pp. 386–391.Google Scholar
  25. Klich, M.A., Identification of Common Aspergillus Species, Utrecht: Centraalbureau voor Schimmelcultures, 2002.Google Scholar
  26. Kochkina, G.A., Ivanushkina, N.E., Akimov, V.N., Ozerskaya, S.M., and Gilichinskii, D.A., Halo-and psychrotolerant Geomyces fungi from arctic cryopegs and marine deposits, Microbiology (Moscow), 2007, vol. 76, no. 1, pp. 31–38.CrossRefGoogle Scholar
  27. Kohlmeyer, J. and Kohlmeyer, E., Marine Mycology—The Higher Fungi, New York: Academic, 1979.Google Scholar
  28. Kurakov, A.V., Lavrent’ev, R.B., Nechitailo, T.Yu., Golyshin, P.N., and Zvyagintsev, D.G., Diversity of facultatively anaerobic microscopic mycelial fungi in soils, Microbiology (Moscow), 2008, vol. 77, no. 1, pp. 90–98.CrossRefGoogle Scholar
  29. Kurakov, A.V., Khidirov, K.S., Sadykova, V.S., and Zvyagintsev, D.G., Anaerobic growth ability and alcohol fermentation activity of microscopic fungi, Appl. Biochem. Microbiol., 2011, vol. 47, no. 2, pp. 169–175.CrossRefGoogle Scholar
  30. Medvedev, V.S., Nevesskii, E.N., Govberg, L.I., Malyasova, E.S., Dzhinoridze, R.I., and Kirienko, E.A., The structure and stratigraphic division of bottom sediments of the White Sea, in Severnyi Ledovityi okean i ego poberezh’e v kainozoe (The Arctic Ocean and Its Coast in Cainozoe), Leningrad, 1970, pp. 253–267.Google Scholar
  31. Morozkina, E.V. and Kurakov, A.V., Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: a review, Appl. Biochem. Microbiol., 2007, vol. 43, no. 5, pp. 544–549.CrossRefGoogle Scholar
  32. Pivkin, M.V., Kuznetsova, T.A., and Sova, V.V., Morskie griby i ikh vtorichnye metabolity (Marine Fungi and Their Secondary Metabolites), Vladivostok: Dal’nauka, 2006.Google Scholar
  33. Raghukumar, S., Fungi in Coastal and Oceanic Marine Ecosystems. Marine Fungi, New York: Springer-Verlag, 2017.CrossRefGoogle Scholar
  34. Rice, A.V. and Currah, R.S., Oidiodendron: A survey of the named species and related anamorphs of Myxotrichum, Stud. Mycol., 2005, vol. 53, pp. 83–120.CrossRefGoogle Scholar
  35. Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, no. 2, pp. 69–76.CrossRefPubMedGoogle Scholar
  36. Seifert, K.A. and Gams, W., The genera of Hyphomycetes—2011 update, Persoonia: Mol. Phylogeny Evol. Fungi, 2011, vol. 27, p. 119.CrossRefGoogle Scholar
  37. White, T.J., Bruns, T., Lee, S.J.W.T., and Taylor, J.W., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., London: Academic, 1990, pp. 315–322.Google Scholar
  38. Zalar, P. and Gunde-Cimerman, N., Cold-adapted yeasts in Arctic habitats, in Cold-Adapted Yeasts Biodiversity, Berlin: Springer-Verlag, 2014, pp. 49–74.CrossRefGoogle Scholar
  39. Zare, R. and Gams, W., A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov., Nova Hedwigia, 2001, vol. 73, nos. 1–2, pp. 1–50.Google Scholar
  40. Zuccaro, A., Schoch, C.L., Spatafora, J.W., Kohlmeyer, J., Draeger, S., and Mitchell, J.I., Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus, Appl. Environ. Microbiol., 2008, vol. 74, pp. 931–941. http://data.oceaninfo.info/atlas/Balt/3_watertemp_stats_table_8621569TWMR.html. CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Khusnullina
    • 1
  • E. N. Bilanenko
    • 1
  • A. V. Kurakov
    • 1
  1. 1.Department of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations