Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 3, pp 247–258 | Cite as

Postglacial Colonization of the North European Seas by Pacific Fishes and Lamprey

  • A. A. Makhrov
  • D. L. Lajus
Article

Abstract

A critical analysis of literature data on the distribution, morphology, and phylogeography of the Arctic lamprey (Lethenteron camtschaticum) and five species of marine and anadromous fish such as navaga (Eleginus navaga), pollock (Theragra chalcogramma), rainbow smelt (Osmerus mordax dentex), Pacific herring (Clupea pallasii), and pond smelt (Hypomesus olidus) has been performed. The results show that all these species have colonized Northern European seas, distributing along the Arctic coastline of Eurasia after the glacier retreat. The reasons that the dispersal of these species in the Atlantic Ocean may be impeded (preference for a cold environment, competition, and decrease of the evolutionary potential) are discussed.

Keywords

Arctic Ocean zoogeography phylogeography fish lamprey evolution immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, J.A. and Hart, M.W., Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis), Evolution, 2005, vol. 59, pp. 532–543.PubMedGoogle Scholar
  2. Andriyashev, A.P., Ryby severnykh morei SSSR (Fishes of the Northern Seas of Soviet Union), Moscow: Akad. Nauk SSSR, 1954.Google Scholar
  3. Andriyashev, A.P., Amphiboreal distribution of navaga and Pacific herring with comments on the possible origin, in Materialy po kompleksnomu izucheniyu Belogo morya (The Data of Complex Study of the White Sea), Moscow: Akad. Nauk SSSR, 1957, no. 1, pp. 117–125.Google Scholar
  4. Andriashev, A.P., Possible pathways of Paraliparis (Pisces: Liparididae) and some other North Pacific secondary deep-sea fishes into the North Atlantic and Arctic depths, Polar Biol., 1991, vol. 11, pp. 213–218.CrossRefGoogle Scholar
  5. Artamonova, V.S., Rolskiy, A.Yu., and Makhrov, A.A., Genetic diversity of beaked redfish (Sebastes mentella) populations in the North Atlantic and the Arctic ocean, 49th European Marine Biology Symp. “A Variety of Interactions in Marine Environment,” September 8–12, 2014, Abstracts of Papers, St. Petersburg, 2014, p. 82.Google Scholar
  6. Artamonova, V.S., Kucheryavyy, A.V., and Makhrov, A.A., Nucleotide sequence diversity of the mitochondrial cytochrome oxidase subunit I (COI) gene of the Arctic lamprey (Lethenteron camtschaticum) in the Eurasian part of the range, Hydrobiologia, 2015, vol. 757, pp. 197–208.CrossRefGoogle Scholar
  7. Artamonova, V.S., Kolmakova, O.V., Kirillova, E.A., and Makhrov, A.A., Phylogeny of salmonoid fishes (Salmonoidei) based on mtDNA COI gene sequences (barcoding), Contemp. Probl. Ecol., 2018, vol. 11, no. 3, pp. 271–285.Google Scholar
  8. Atlas presnovodnykh ryb Rossii (Atlas of Freshwater Fishes of Russia), Reshetnikov, Yu.S., Ed., Moscow: Nauka, 2003.Google Scholar
  9. Averintsev, S.V., Sel’di Belogo morya (Herrings of the White Sea), Tr. Nauch. Inst. Rybn. Khoz., Petrozavodsk: Narkomzem AKSSR, 1927, part 1, vol. 2, pp. 41–77.Google Scholar
  10. Averintsev, S.V., Sel’di Belogo morya (Herrings of the White Sea), Tr. Nauch. Inst. Rybn. Khoz., Petrozavodsk: Narkomzem AKSSR, 1928, parts 2–3, vols. 3–4, pp. 73–142.Google Scholar
  11. Balakirev, E.S., Parensky, V.A., and Ayala, F.A., Complete mitochondrial genomes of the anadromous and resident forms of the lamprey Lethenteron camtschaticum, Mitochondrial DNA, 2014, vol. 22, pp. 1–2.CrossRefGoogle Scholar
  12. Barskaya, Yu.Yu., Ieshko, E.P., and Lebedeva, D.I., Parazity losovedinykh ryb Fennoskandii (Parasites of Salmon-Like Fishes of Fennoscandia), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2008.Google Scholar
  13. Bauch, H.A., Erlenkeuser, H., Spielhagen, R.F., Struck, U., Matthiessen, J., Thiede, J., and Heinemeier, J., A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30000 yr, Quat. Sci. Rev., 2001, vol. 20, pp. 659–678.CrossRefGoogle Scholar
  14. Berg, L.S., Über die amphiboreale (discontinuierliche) Verbreitung der Meeresfauna in der nördlichen Hemisphäre, Zoogeographica, 1934, vol. 2, no. 3, pp. 393–409.Google Scholar
  15. Bespalaya, Yu., Bolotov, I., Aksenova, O., Kondakov, A., Gofarov, M., and Paltser, I., Occurrence of a Sphaerium species (Bivalvia: Sphaeriidae) of Nearctic origin in European Arctic Russia (Vaigach Island) indicates an ancient exchange between freshwater faunas across the Arctic, Polar Biol., 2015, vol. 38, pp. 1545–1551.CrossRefGoogle Scholar
  16. Biologiya i fiziologiya kamchatskogo kraba pribrezh’ya Barentseva morya (Biology and Physiology of Kamchatka Coastal Crab of the Barents Sea), Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 2008.Google Scholar
  17. Bogdanov, V.D., Bogdanova, E.N., Gos’kova, O.A., and Mel’nichenko, I.P., Retrospektiva ikhtiologicheskikh i gidrobiologicheskikh issledovanii na Yamale (Retrospective Ichthyologic and Hydrobiological Studies in Yamal), Yekaterinburg: Ekaterinburg, 2000.Google Scholar
  18. Bolotov, I.N., Aksenova, O.V., Bespalaya, Y.V., Gofarov, M.Y., Kondakov, A.V., Paltser, I.S., Stefansson, A., Travina, O.V., and Vinarski, M.V., Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiologia, 2017, vol. 787, pp. 73–98.Google Scholar
  19. Borovikova, E.A. and Makhrov, A.A., Detection of the mitochondrial DNA haplotype characteristic of the least cisco (Coregonus sadinella, Valenciennes, 1848) in the vendace (C. albula, Linnaeus, 1758) population of Vodlozero (the Baltic Sea basin), Biol. Bull., 2009, vol. 36, no. 1, pp. 80–83.Google Scholar
  20. Borovikova, E.A. and Makhrov, A.A., Adaptation of populations and development history: success in settlement of salmon fishes depends on the sizes of preglacial refugia, Materialy konferentsii “Lyubishchevskie chteniya–2014” (Proc. Conf. “Lyubishchev Readings–2014”), Ulyanovsk: Ul’yanovsk. Gos. Pedagog. Univ., 2014, pp. 70–76.Google Scholar
  21. Borovikova, E.A., Romanov, V.I., and Nikulina, J.S., Morphological and genetic features of cisco (Coregonidae: Coregonus sp.) from Lake Sobachye (Putorana Plateau), Russ. J. Genet.: Appl. Res., 2018, vol. 8, no. 1, pp. 37–43.CrossRefGoogle Scholar
  22. Briggs, J.C., A faunal history of the North Atlantic Ocean, Syst. Zool., 1970, vol. 19, pp. 19–34.CrossRefGoogle Scholar
  23. Byrkjedal, I., Rees, D.J., Christiansen, J.S., and Fevolden, S.-E., The taxonomic status of Theragra finnmarchica Koefoed, 1956 (Teleostei: Gadidae): perspectives from morphological and molecular data, J. Fish Biol., 2008, vol. 73, pp. 1183–1200.CrossRefGoogle Scholar
  24. Carr, S.M., Kivlichan, D.S., Pepin, P., and Crutcher, D.C., Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species, Can. J. Zool., 1999, vol. 77, pp. 19–26.CrossRefGoogle Scholar
  25. Chereshnev, I.A., Biogeografiya presnovodnykh ryb Dal’nego Vostoka Rossii (Biogeography of Freshwater Fishes of the Russian Far East), Vladivostok: Dal’nauka, 1998.Google Scholar
  26. Chereshnev, I.A. and Kirillov, A.F., Fish-like and fishes of marine and fresh waters of the Laptev and East Siberian sea basins, Vestn. Sev.-Vost. Nauch. Tsentra, Dal’nevost. Otd., Ross. Akad. Nauk, 2007, no. 2, pp. 95–106.Google Scholar
  27. Chernova, N.V., Distribution patterns and chorological analysis of fish fauna of the Arctic region, J. Ichthyol., 2011, vol. 51, no. 10, pp. 825–924.CrossRefGoogle Scholar
  28. Christiansen, J.S., Fevolden, S.-E., and Byrkjedal, I., The occurrence of Theragra finnmarchica Koefoed, 1956 (Teleostei, Gadidae), 1932–2004, J. Fish Biol., 2005, vol. 66, pp. 1193–1197.Google Scholar
  29. Christiansen, J.S., Mecklenburg, C.W., and Karamushko, O.V., Arctic marine fishes and their fisheries in light of global change, Global Change Biol., 2014, vol. 20, pp. 352–359.CrossRefGoogle Scholar
  30. Coyer, J.A., Hoarau, G., van Schaik, J., Luijckx, P., and Olsen, J.L., Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic, J. Biogeogr., 2011, vol. 38, pp. 756–771.CrossRefGoogle Scholar
  31. Deryugin, K.M., Fauna of the White Sea and its living conditions, Issled. Morei SSSR, 1928, nos. 7–8.Google Scholar
  32. Dmitrenko, I.A., Polyakov, I.V., Kirillov, S.A., Timokhov, L.A., Frolov, I.E., Sokolov, V.T., Simmons, H.L., Ivanov, V.V., and Walsh, D., Toward a warmer Arctic Ocean: spreading of the early 21st century Atlantic water warm anomaly along the Eurasian basin margins, J. Geophys. Res.: Oceans, 2008, vol. 113, p. C05023.Google Scholar
  33. Dodson, J.J., Tremblay, S., Colombani, F., Carscadden, J.E., and Lecomte, F., Trans-Arctic dispersal and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus), Mol. Ecol., 2007, vol. 16, pp. 5030–5043.PubMedCrossRefGoogle Scholar
  34. Dorovskikh, G.N., Zoogeografiya parazitov ryb glavnykh rek severo-vostoka Evropy (Zoogeography of Fish Parasites from the Main Rivers of Northeastern Europe), Syktyvkar: Syktyvkarsk. Gos. Univ., 2011.Google Scholar
  35. Ekman, S., Zoogeography of the Sea, London: Sidgwick and Jackson, 1953.Google Scholar
  36. Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R.B., Aschan, M.M., and Dolgov, A.V., Recent warming leads to a rapid borealization of fish communities in the Arctic, Nat. Clim. Change, 2015, vol. 5, pp. 673–677.CrossRefGoogle Scholar
  37. Gladenkov, A.Yu. and Gladenkov, Yu.B., Onset of connections between the Pacific and Arctic Oceans through the Bering Strait in the Neogene, Stratigr. Geol. Correl., 2004, vol. 12, no. 2, pp. 175–187.Google Scholar
  38. Gladenkov, A.Yu., Oleinik, A.E., Marincovich, L., Jr., and Barinov, K.B., A refined age for the earliest opening of Bering Strait, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2002, vol. 183, pp. 321–328.CrossRefGoogle Scholar
  39. Golikov, N.A. and Scarlato, O.A., Evolution of Arctic ecosystems during the Neogene period, in The Arctic Seas. Climatology, Oceanography, Geology and Biology Herman, Y., Ed., New York: van Nostrand Reinhold, 1989, pp. 257–279.Google Scholar
  40. Grant, W.S., Biochemical genetic divergence between Atlantic, Clupea harengus, and Pacific, C. pallasi herring, Copeia, 1986, vol. 1986, pp. 714–719.Google Scholar
  41. Günther, A.C.L.G., An Introduction to the Study of Fishes, Edinburgh: Adam and Charles Black, 1880.CrossRefGoogle Scholar
  42. Gur’yanova, E.F., Beloe more i ego fauna (Fauna of the White Sea), Petrozavodsk: Gos. Izd. Karelo-Finsk. SSR, 1948.Google Scholar
  43. Gur’yanova, E.F., Specific fauna of the Arctic Ocean and its role in understanding their development, in Severnyi Ledovityi okean i ego poberezh’e v kainozoe (The Arctic Ocean and Its Coast in Cainozoe), Tolmachev, A.I., Ed., Leningrad: Gidrometeoizdat, 1970, pp. 126–161.Google Scholar
  44. Heincke, F., Naturgeschichte des Herings: Die Lokalformen und die Wanderungen des Herings in den Europäischen Meeren, Berlin: Otto Salle, 1898, vol. 2.Google Scholar
  45. Hardy, S.M., Carr, C.M., Hardman, M., Steinke, D., Corstophine, E., and Mah, C., Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools, Mar. Biodiversity, 2011, vol. 41, pp. 195–210.CrossRefGoogle Scholar
  46. Heads, M., Dating nodes on molecular phylogenies: a critique of molecular biogeography, Cladistics, 2005, vol. 21, pp. 62–78.CrossRefGoogle Scholar
  47. Hrbek, T. and Meyer, A., Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae), J. Evol. Biol., 2003, vol. 16, pp. 17–36.PubMedCrossRefGoogle Scholar
  48. Hunter, J.G., Leach, S.T., McAllister, D.E., and Steigerwald, M.B., A distributional atlas of records of the marine fishes of Arctic Canada in the National Museums of Canada and Arctic Biological Station, Syllogeus, 1984, no. 52, pp. 1–35.Google Scholar
  49. Hyde, J.R. and Vetter, R.D., The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier), Mol. Phylogenet. Evol., 2007, vol. 44, pp. 780–811.CrossRefGoogle Scholar
  50. Ilves, K.L. and Taylor, E.B., Evolutionary and biogeographical patterns within the smelt genus Hypomesus in the North Pacific Ocean, J. Biogeogr., 2008, vol. 35, pp. 48–64.Google Scholar
  51. Ivanova, E.I., Occurrence of the smelt at the European North, Tr. Vses. Gidrobiol. O-va, 1952, vol. 4, pp. 252–259.Google Scholar
  52. Jones, E.P., Circulation in the Arctic Ocean, Polar Res., 2001, vol. 20, pp. 139–146.CrossRefGoogle Scholar
  53. Kamchatskii krab v Barentsevom more (The Red King Crab in the Barents Sea), Murmansk: Polar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2003, 2nd ed.Google Scholar
  54. Katolikova, M., Khaitov, V., Väinölä, R., Gantsevich, M., and Strelkov, P., Genetic, ecological and morphological distinctness of the blue mussels Mytilus trossulus Gould and M. edulis L. in the White Sea, PLoS One, 2016, vol. 11, no. 4, p. e0152963.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kettle, A.J., Morales-Muñiz, A., Roselló-Izquierdo, E., Heinrich, D., and Vøllestad, L.A., Refugia of marine fish in the northeast Atlantic during the last glacial maximum: concordant assessment from archaeozology and palaeotemperature reconstructions, Clim. Past, 2011, vol. 7, pp. 181–201.CrossRefGoogle Scholar
  56. Kirpichnikov, V.S., Biological-taxonomic description of smelts form the White Sea, Cheshskaya Inlet, and Pechora River, Tr. VNIRO, 1935, vol. 2, pp. 101–194.Google Scholar
  57. Klyukanov, V.A., Morphological basis for taxonomy of smelts of genus Hypomesus (Osmeridae), Zool. Zh., 1970, vol. 49, no. 10, pp. 1534–1542.Google Scholar
  58. Koefoed, E., Theragra finnmarchica n.sp., Rep. Norw. Fish. Mar. Invest., 1956, vol. 11, no. 5, pp. 3–11.Google Scholar
  59. Kosswig, C., Tethys and its relation to the peri-Mediterranean faunas of freshwater fishes, in Aspects of Tethyan Biogeography, Adams, C.G. and Ager, D.V., Eds., London: Systematic Association, 1967, pp. 313–324.Google Scholar
  60. Koz’min, A.K., Rybnye resursy rek i ozer evropeiskogo severo-vostoka Rossii: ikh sokhranenie i ispol’zovanie (Fish Resources of rivers and Lakes of European Northeast of Russia: Conservation and Use), Murmansk: Polar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2011.Google Scholar
  61. Krab-strigun opilio Chionoecetes opilio v Barentsevom i Karskom moryakh (the Snow Crab (Chionoecetes opilio) from the Barents and Kara Seas), Murmansk: Polar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2016.Google Scholar
  62. Kruglikova, S.B. and Bjørklund, K.R., Invasion of the modern Polycystina (Euradiolaria) into the Arctic Ocean: Paleoecological aspects, Russ. J. Biol. Invasions, 2010, vol. 1, no. 2, pp. 95–101.CrossRefGoogle Scholar
  63. Krylova, E.M., Ivanov, D.L., and Mironov, A.N., The ratio of species of Atlantic and Pacific origin in modern Arctic fauna of bivalve mollusks, Invertebr. Zool., 2013, vol. 10, no. 1, pp. 89–126.Google Scholar
  64. Kuderskii, L.A., Development of northern elements of ichthyofauna of the Northern European part of Soviet Union, Sb. Nauchn. Tr.-Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1987, no. 258, pp. 102–121.Google Scholar
  65. Kuklinski, P., Taylor, P.D., Denisenko, N.V., and Berning, B., Atlantic origin of the arctic biota? Evidence from phylogenetic and biogeographical analysis of the cheilostome bryozoan genus Pseudoflustra, PLoS One, 2013, vol. 8, no. 3, p. e59152.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kuz’min, S.A. and Gudimova, E.N., Vselenie kamchatskogo kraba v Barentsevo more. Osobennosti biologii, perpsektivy promysla (Invasion of the Red King Crab into the Barents Sea: Specific Biology and Prospective Fishery), Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 2002.Google Scholar
  67. Laakkonen, H.M., Lajus, D.L., Strelkov, P., and Väinölä, R., Phylogeography of amphi-boreal fish: tracing the history of the Pacific herring Clupea pallasii in North-East European seas, BMC Evol. Biol., 2013, vol. 13, p. 67. doi 10.1186/1471-2148-13-67PubMedPubMedCentralCrossRefGoogle Scholar
  68. Laakkonen, H.M., Strelkov, P., Lajus, D.L., and Väinölä, R., Introgressive hybridization between the Atlantic and Pacific herrings (Clupea harengus and C. pallasii) in the north of Europe, Mar. Biol., 2015a, vol. 162, pp. 39–54.CrossRefGoogle Scholar
  69. Laakkonen, H.M., Strelkov, P., and Väinölä, R., Molecular lineage diversity and interoceanic biogeographical history in Hiatella (Mollusca, Bivalvia), Zool. Scr., 2015b, vol. 44, pp. 383–402.CrossRefGoogle Scholar
  70. Lajus, D.L., Long-term discussion on the stocks of the White Sea herring: historical perspective and present state, ICES Mar. Sci. Symp., 2002, vol. 215, pp. 315–322.Google Scholar
  71. Lyubishchev, A.A., Problemy formy, sistematiki i evolyutsii organizmov (Problems of Form, Systematics, and Evolution of the Organisms), Moscow: Nauka, 1982.Google Scholar
  72. Makhrov, A.A. and Bolotov, I.N., Dispersal routes and species identification of freshwater animals in Northern Europe: a review of molecular evidence, Russ. J. Genet., 2006, vol. 42, no. 10, pp. 1101–1115.CrossRefGoogle Scholar
  73. Makhrov, A.A. and Popov, I.Yu., Life forms of lampreys (Petromyzontidae) as a manifestation of intraspecific diversity of ontogenesis, Russ. J. Dev. Biol., 2015, vol. 46, no. 4, pp. 196–207.CrossRefGoogle Scholar
  74. Makhrov, A.A., Ponomareva, M.V., Khaimina, O.V., Gilepp, V.E., Efimova, O.V., Nechaeva, T.A., and Vasilenkova, T.I., Abnormal development of gonads of dwarf females and low survival of their offspring as the cause of rarity of resident populations of Atlantic salmon (Salmo salar L.), Russ. J. Dev. Biol., 2013, vol. 44, no. 6, pp. 326–335.CrossRefGoogle Scholar
  75. Makhrov, A.A., Skaala, O., and Altukhov, Yu.P., Alleles of sAAT-1,2* isoloci in brown trout: potential diagnostic marker for tracking routes of post-glacial colonization in northern Europe, J. Fish Biol., 2002, vol. 61, pp. 842–846.CrossRefGoogle Scholar
  76. Makhrov, A.A., Verspoor, E., Artamonova, V.S., and O’Sullivan, M., Atlantic salmon colonization of the Russian Arctic coast: pioneers from North America, J. Fish Biol., 2005, vol. 67, suppl. A, pp. 68–79.CrossRefGoogle Scholar
  77. Makhrov, A.A., Kucheryavyy, A.V., and Savvaitova, K.A., Review on parasitic and non-parasitic forms of the Arctic lamprey Lethenteron camtschaticum (Petromyzontiformes, Petromyzontidae) in the Eurasian Arctic, J. Ichthyol., 2013b, vol. 53, no. 11, pp. 944–958.CrossRefGoogle Scholar
  78. Makhrov, A.A., Bolotov, I.N., and Artamonova, V.S., Ecological reasons and consequences of new taxon appearance with lower adaptive potential by example of freshwater pearl mussels (Margaritifera), Tr. Karel’sk. Nauch. Tsentra, Ross. Akad. Nauk, 2016, no. 12, pp. 68–82.Google Scholar
  79. Mäkinen, H.S. and Merilä, J., Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—evidence for multiple glacial refugia, Mol. Phylogenet. Evol., 2008, vol. 46, pp. 167–182.PubMedCrossRefGoogle Scholar
  80. Malyutina, A.M., Pichugin, M.Yu., Polyakov, M.P., and Kuzishchin, K.V., Pond smelt Hypomesus olidus, a new species of the ichthyofauna of the Commander Islands, J. Ichthyol., 2017, vol. 57, no. 1, pp. 89–98.CrossRefGoogle Scholar
  81. Mecklenburg, C.W., Mecklenburg, T.A., and Thorsteinson, L.K., Fishes of Alaska, Bethesda: Am. Fish. Soc., 2002.Google Scholar
  82. Mecklenburg, C.W., Møller, P.R., and Steinke, D., Biodiversity of arctic marine fishes: taxonomy and zoogeography, Mar. Biodiversity, 2011, vol. 41, pp. 109–140.CrossRefGoogle Scholar
  83. Mironov, A.N. and Dilman, A.B., Effect of the East Siberian barrier on the echinoderm dispersal in the Arctic Ocean, Oceanology (Engl. Transl.), 2010, vol. 50, no. 3, pp. 342–355.Google Scholar
  84. Møller, P.R., Nielsen, J.G., and Anderson, M.E., Systematics of polar fishes, in Fish Physiology, Vol. 22: Physiology of Polar Fishes, Farrell, A.P. and Steffensen, J.F., Eds., San Diego: Elsevier, 2005, pp. 25–78.CrossRefGoogle Scholar
  85. Møller, P.R., Nielsen, J.G., Knudsen, S.W., Poulsen, J.Y., Sünksen, K., and Jørgensen, O.A., A Checklist of the Fish Fauna of Greenland Waters, Auckland: Magnolia, 2010.Google Scholar
  86. Mueter, F.J., Nahrgang, J., Nelson, R.J., and Berge, J., The ecology of gadid fishes in the circumpolar Arctic with a special emphasis on the polar cod (Boreogadus saida), Polar Biol., 2016, vol. 39, pp. 961–967.CrossRefGoogle Scholar
  87. Nellbring, S., The ecology of smelts (genus Osmerus): a literature review, Nord. J. Freshwater Res., 1989, no. 65, pp. 116–145.Google Scholar
  88. Neretina, T.V., Genetic revision of invertebrates from Kandalaksha Bay (White Sea), Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 2015.Google Scholar
  89. Nesis, K.N., Mechanisms and periods of development of interrupted range of amphiboreal species of marine bottom animals, Okeanologiya (Moscow), 1961, vol. 1, no. 5, pp. 893–903.Google Scholar
  90. Novoselov, A.P., Kondakov, A.V., Gofarov, M.Yu., and Bolotov, I.N., The pond smelt Hypomesus olidus (Osmeridae) is a new species for fauna of the Barents Sea, J. Ichthyol., 2018, (in press).Google Scholar
  91. Orlov, A.M. and Baitalyuk, A.A., Comparison of distribution of two species of anadromous parasitic lampreys in Northern Pacific, Tr. VNIRO, 2015, vol. 154, pp. 39–56.Google Scholar
  92. Orti, G., Bell, M.A., Reimchen, T.E., and Meyer, A., Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations, Evolution, 1994, vol. 48, pp. 608–622.PubMedCrossRefGoogle Scholar
  93. Osinov, A.G., Volkov, A.A., Alekseyev, S.S., Sergeev, A.A., Oficerov, M.V., and Kirillov, A.F., On the origin and phylogenetic position of Arctic charr (Salvelinus alpinus complex, Salmonidae) from Lake Cherechen’ (middle Kolyma River basin): controversial genetic data, Polar Biol., 2017, vol. 40, pp. 777–786.Google Scholar
  94. Palumbi, S.R. and Wilson, A.C., Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis, Evolution, 1990, vol. 44, pp. 403–415.PubMedCrossRefGoogle Scholar
  95. Perestenko, L.P., Krasnye vodorosli dal’nevostochnykh morei Rossii (The Red Algae of Far Easter Seas of Russia), St. Petersburg: Ol’ga, 1994.Google Scholar
  96. Pokrovskaya, T.N., The key reasons of modern distribution of navaga (genus Eleginus), Zool. Zh., 1958, vol. 37, no. 8, pp. 1181–1194.Google Scholar
  97. Polyakova, E.I., Arkticheskie morya Evrazii v pozdnem kainozoe (Arctic Seas of Eurasia in Late Cainozoe), Moscow: Nauchnyi Mir, 1997.Google Scholar
  98. Privalikhin, A.M. and Norvillo, G.V., On the finding of a rare species—Norwegian pollock Theragra finnmarchica Koefoed, 1956 (Gadidae)—in the Barents Sea, J. Ichthyol., 2010, vol. 50, no. 2, pp. 143–147.CrossRefGoogle Scholar
  99. Puzanov, I., Some controversial issues of amphiboreal distribution of marine fauna, Tr. Odessk. Gos. Univ. I.I. Mechnikova, 1949, vol. 4, pp. 25–31.Google Scholar
  100. Rawson, P.D. and Harper, F.M., Colonization of the northwest Atlantic by the blue mussel, Mytilus trossulus postdates the last glacial maximum, Mar. Biol., 2009, vol. 156, pp. 1857–1868.Google Scholar
  101. Renaud, C.B. and Naseka, A.M., Redescription of the Far Eastern brook lamprey Lethenteron reissneri (Dybowski, 1869) (Petromyzontidae), ZooKeys, 2015, vol. 506, pp. 75–93.CrossRefGoogle Scholar
  102. Rol’skii, A.Yu., Makhrov, A.A., and Artamonova, V.S., Speciation of marine rockfishes of genus Sebastes from Atlantic and Arctic oceans, Materialy III mezhdunarodnoi konferentsii posvyashchennoi 130-letiyu sa dnya rozhdeniya N.I. Vavilova i 110-letiyu so dnya osnovaniya Gosudarstvennogo Darvinovskogo muzeya “Sovremennye problemy biologicheskoi evolyutsii,” g. Moskva, 16–20 oktyabrya 2017 g. (Proc. III Int. Conf. Dedicated to the 130th Anniversary of N.I. Vavilov and 110th Anniversary of Establishment of the State Darwin Museum “Modern Biological Evolution,” Moscow, October 16–20, 2017), Moscow, 2017, pp. 101–104.Google Scholar
  103. Romanov, V.I., Fauna, systematics, and biology of fishes in lake-river hydrosystems of southern Taimyr, Extended Abstract of Doctoral (Biol.) Dissertation, Tomsk: Tomsk State Univ., 2005.Google Scholar
  104. Ryzhanovskii, V.N. and Bogdanov, V.D., Katalog pozvonochnykh zhivotnykh gorno-ravninnoi strany Ural: Annotirovannyi spisok i regional’noe raspredelenie. Spravochnoe posbie (Catalogue of Vertebrates of Mountain-Plain Urals: Annotated List and Regional Distribution. A Handbook), Yekaterinburg: Goshchitskii, 2013.Google Scholar
  105. Sawatzky, C.D., Michalak, D., Reist, J.D., Carmichael, T.J., Mandrak, N.E., and Heuring, L.G., Distributions of Freshwater and Anadromous Fishes from the Mainland Northwest Territories, Canada, Winnipeg: Dep. Fish. Oceans Can., 2007.Google Scholar
  106. Scott, W.B. and Crossman, E.J., Freshwater Fishes of Canada, Ottawa: Fish. Res. Board Can., 1973.Google Scholar
  107. Sendek, D.S., Novoselov, A.P., and Boznak, E.I., Genetic differentiation of Coregonid fishes in Pechora River, Contemp. Probl. Ecol., 2016, vol. 9, no. 2, pp. 166–171.CrossRefGoogle Scholar
  108. Shmal’gauzen, I.I., Resistance of organic forms (ontogenesis) during evolution, Zh. Obshch. Biol., 1945, vol. 6, no. 1, pp. 3–25.Google Scholar
  109. Shul’man, S.S. and Shul’man-Al’bova, R.E., Parazity ryb Belogo morya (Fish Parasites of the White Sea), Moscow: Akad. Nauk SSSR, 1953.Google Scholar
  110. Sidorov, G.P. and Reshetnikov, Yu.S., Lososeobraznye ryby vodoemov evropeskogo Severo-Vostoka (Salmoniformes Fishes of the Reservoirs of European Northeast), Moscow: KMK, 2014.Google Scholar
  111. Skurikhina, L.A., Oleinik, A.G., Kukhlevsky, A.D., Kovpak, N.E., Sendek, D.S., and Maznikova, O.A., Genetic differentiation of Pacific smelt Osmerus mordax dentex inferred from the data of mitochondrial DNA analysis, Russ. J. Genet., 2015, vol. 51, no. 12, pp. 1221–1232.CrossRefGoogle Scholar
  112. Strelkov, P., Nikula, R., and Väinölä, R., Macoma balthica in the White and Barents Seas: properties of a widespread marine hybrid swarm (Mollusca: Bivalvia), Mol. Ecol., 2007, vol. 16, pp. 4110–4127.PubMedCrossRefGoogle Scholar
  113. Strelkov, P.P., Lajus, D.L., and Väinölä, R.O., Pursuing the hybrid herring, Priroda (Moscow), 2016, no. 10, pp. 51–59.Google Scholar
  114. Svetovidov, A.N., Gadiformes, in Fauna SSSR. Ryby (Fauna of Soviet Union, Fishes), Moscow: Akad. Nauk SSSR, 1948, vol. 9, no. 4.Google Scholar
  115. Svetovidov, A.N., Clupeidae, in Fauna SSSR. Ryby (Fauna of Soviet Union, Fishes), Moscow: Akad. Nauk SSSR, 1952, vol. 2, no. 1.Google Scholar
  116. Svetovidov, A.N., The Atlantic origin of some groups of fishes, Proc. XIV Int. Congress of Zoology, Copenhagen, August 5–12, 1953, Copenhagen, 1956, pp. 118–124.Google Scholar
  117. Svetovidov, A.N., Occurrence of the members of genus Theragra in the Barents Sea related to the origin of amphiboreal Gadidae and Clupeidae, Zool. Zh., 1959a, vol. 38, no. 3, pp. 449–464.Google Scholar
  118. Svetovidov, A.N., A Note on Theragra finmarchica Koefoed, Bergen: Grieg, 1959b.Google Scholar
  119. Svitoch, A.A., Morskoi pleistotsen poberezhii Rossii (Marine Pleistocene of the Coastal Russia), Moscow: GEOS, 2003.Google Scholar
  120. Taylor, E.B. and Dodson, J.J., A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus), Mol. Ecol., 1994, vol. 3, pp. 235–248.PubMedCrossRefGoogle Scholar
  121. Teske, P.R., Hamilton, H., Matthee, C.A., and Barker, N.P., Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage, BMC Evol. Biol., 2007, vol. 7, p. 138.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ursvik, A., Breines, R., Christiansen, J.S., Fevolden, S.-E., Coucheron, D.H., and Johansen, S.D., A mitogenetic approach to the taxonomy of pollocks: Theragra chalcogramma and T. finnmarchica represent one single species, BMC Evol. Biol., 2007, vol. 7, pp. 86.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Väinölä, R. and Strelkov, P., Mytilus trossulus in Northern Europe, Mar. Biol., 2011, vol. 158, no. 4, pp. 817–833.PubMedPubMedCentralCrossRefGoogle Scholar
  124. van Oppen, M.J.H., Draisma, S.G.A., Olsen, J.L., and Stam, W.T., Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences, Mar. Biol., 1995, vol. 123, pp. 179–188.Google Scholar
  125. Vasil’eva, E.D., Morphological divergence of two species of gadid fishes Eleginus navaga and E. gracilis (Gadidae) with disjunctive area, J. Ichthyol., 1997, vol. 37, no. 9, pp. 754–760.Google Scholar
  126. Vermeij, G.J., Anatomy of an invasion: the trans-Arctic interchange, Paleobiology, 1991, vol. 17, pp. 281–307.CrossRefGoogle Scholar
  127. Walters, V., Fishes of Western Arctic America and Eastern Arctic Siberia: taxonomy and zoogeography, Bull. Am. Mus. Nat. Hist., 1955, vol. 106, no. 5, pp. 257–368.Google Scholar
  128. Wisz, M.S., Broennimann, O., Grønkjær, P., Møller, P.R., Olsen, S.M., Swingedouw, D., Hedeholm, R.B., Nielsen, E.E., Guisan, A., and Pellissier, L., Arctic warming will promote Atlantic–Pacific fish interchange, Nat. Clim. Change, 2015, vol. 5, pp. 261–265.CrossRefGoogle Scholar
  129. Yamazaki, Y. and Goto, A., Molecular phylogeny and speciation of East Asian lampreys (genus Lethenteron) with reference to their life-history diversification, in Jawless Fishes of the World, Orlov, A. and Beamish, R., Eds., Newcastle: Cambridge Scholars Publ., 2016, vol. 1, pp. 20–62.Google Scholar
  130. Zhirkov, I.A., Zhizn’ na dne. Bio-geografiya i bio-ekologiya bentosa (Life at the Bottom: Biogeography and Bioecology of Benthos), Moscow: KMK, 2010.Google Scholar
  131. Zhukova, K.A. and Privalikhin, A.M., New data on distribution of Norwegian (Atlantic) pollock Theragra finnmarchica (Gadidae) in the Barents Sea, J. Ichthyol., 2014, vol. 54, no. 3, pp. 217–222.CrossRefGoogle Scholar
  132. Zubchenko, A.V., Veselov, A.E., and Kalyuzhin, S.M., Gorbusha (Oncorhynchus gorbuscha): problemy akklimatizatsii na Evropeiskom Severe Rossii (Naturalization of the Pink Salmon (Oncorhynchus gorbuscha) at the European North of Russia), Petrozavodsk: Folium, 2004.Google Scholar
  133. Zver’kova, L.M., Mintai. Biologiya, sostoyanie zapasov (Walleye Pollock: Biology and Stocks), Vladivostok: TINRO-Tsentr, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations