Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 3, pp 297–308 | Cite as

Comparative Analysis of Content of Omega-3 Polyunsaturated Fatty Acids in Food and Muscle Tissue of Fish from Aquaculture and Natural Habitats

  • M. I. Gladyshev
  • L. A. Glushchenko
  • O. N. Makhutova
  • A. E. Rudchenko
  • S. P. Shulepina
  • O. P. Dubovskaya
  • I. V. Zuev
  • V. I. Kolmakov
  • N. N. Sushchik
Article

Abstract

Two fish species reared in aquaculture (pink salmon Oncorhynchus gorbuscha and whitefish Coregonus lavaretus) and ten fish species from natural habitats (whitefish C. lavaretus, tugun Coregonus tugun, broad whitefish Coregonus nasus, least cisco Coregonus sardinella, vendace Coregonus albula, boganid charr Salvelinus boganidae, charr Salvelinus alpinus complex, northern pike Esox lucius, sharp-snouted lenok Brachymystax lenok, and taimen Hucho taimen) have been studied. The content of two long-chain polyunsaturated omega-3 fatty acids (PUFAs), eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), in the muscle tissue of the fish and in their food (intestine contents) are compared. In the aquacultures of whitefish and pink salmon, the total content of EPA and DHA is significantly higher in feed than in the muscle tissue of the fish, which indicates losses of PUFA in the two-link food chain of the aquaculture during their transfer to the upper trophic level. EPA and DHA losses in aquaculture, which are confirmed by numerous literature data, mean an inefficient usage of the available sources of PUFAs and the aggravation of the global deficit of these biochemicals in the human diet. A study of natural fish populations reveals the accumulation of EPA and DHA in their biomass compared to food in many cases, although opposite phenomena are also observed. An assumption on the presence of an optimal, physiologically adequate species-specific level of PUFA in the fish muscle tissue has been made based on our data and literature data. If the level of PUFAs in the muscles is lower than optimal, their accumulation (bioaccumulation) from food and/or de novo synthesis are observed. When the optimal level is exceeded, the content of EPA and DHA in biomass approaches maximum species-specific values; however, part of these PUFAs entering from food is not digested or is catabolized. According to the obtained data, the species of the order Salmoniformes have an optimal level of 2 to 6 mg/g of wet weight. It has been found that in aquaculture approaching to maximum values of EPA + DHA content was accompanied by their losses (scattering) in the food chains, while in natural ecosystems the maximum values of PUFA content in the fish biomass are achieved by their accumulation from the lower trophic level. Boganid charr S. boganidae had the highest content of EPA + DHA in the muscle tissue among all known fish species (32.78 mg/g of wet weight).

Keywords

fatty acids aquaculture food chain bioaccumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, Y. and Kelley, D.S., Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids, J. Nutr. Biochem., 2010, vol. 21, pp. 781–792.CrossRefPubMedGoogle Scholar
  2. Ahlgren, G., Sonesten, L., Boberg, M., and Gustafsson, I.-B., Fatty acid content of some freshwater fish in lakes of different trophic levels—a bottom-up effect? Ecol. Freshwater Fish., 1996, vol. 5, pp. 15–27.CrossRefGoogle Scholar
  3. Albert, B.B., Derraik, J.G.B., Cameron-Smith, D., Hofman, P.L., Tumanov, S., Villas-Boas, S.G., Garg, M.L., and Cutfield, W.S., Fish oil supplements in New Zealand are highly oxidized and do not meet label content of n-3 PUFA, Sci. Rep., 2015, vol. 5, p. 7928.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amira, M.B., Hanene, J.H., Madiha, D., Imen, B., Mohamed, H., and Abdelhamid, C., Effects of frying on the fatty acid composition in farmed and wild gilthead sea bream (Sparus aurata), Int. J. Food Sci. Technol., 2010, vol. 45, pp. 113–123.CrossRefGoogle Scholar
  5. Bazan, N.G., Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2009, vol. 81, pp. 205–211.CrossRefGoogle Scholar
  6. Beloe more i ego vodosbor pod vliyaniem klimaticheskikh i antropogennykh faktorov (The White Sea and Its Watershed Affected by Climate and Anthropogenic Factors), Filatov, N.N. and Terzhevik, A.Yu., Eds., Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2007.Google Scholar
  7. Benedito-Palos, L., Calduch-Giner, J.A., Ballester-Lozano, G.F. and Perez-Sanchez, J., Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead seabream (Sparus aurata), Br. J. Nutr., 2013, vol. 109, pp. 1175–1187.Google Scholar
  8. Bioresursy Onezhskogo ozera (Biological Resources of the Onega Lake), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2008.Google Scholar
  9. Broadhurst, C.L., Wang, Y., Crawford, M.A., Cunnane, S.C., Parkington, J.E., and Schmidt, W.F., Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2002, vol. 131, pp. 653–673.CrossRefGoogle Scholar
  10. Broughton, K.S., Johnson, C.S., Pace, B.K., Liebman, M., and Kleppinger, K.M., Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production, Am. J. Clin. Nutr., 1997, vol. 65, pp. 1011–1017.CrossRefPubMedGoogle Scholar
  11. Codabaccus, B.M., Carter, C.G., Bridle, A.R., and Nichols, P.D., The “n-3 LC-PUFA sparing effect” of modified dietary n-3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon smolt, Aquaculture, 2012, vols. 356–357, pp. 135–140.CrossRefGoogle Scholar
  12. Davis, B.C. and Kris-Etherton, P.M., Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications, Am. J. Clin. Nutr., 2003, vol. 78, suppl., pp. 640S–646S.CrossRefPubMedGoogle Scholar
  13. De Caterina, R., n–3 Fatty acids in cardiovascular disease, N. Engl. J. Med., 2011, vol. 364, pp. 2439–2450.CrossRefPubMedGoogle Scholar
  14. Elvevoll, E.O., Barstad, H., Breimo, E.S., Brox, J., Eilertsen, K.-E., Lund, T., Olsen, J.O., and Østerud, B., Enhanced incorporation of n-3 fatty acids from fish compared with fish oils, Lipids, 2006, vol. 41, pp. 1109–1114.CrossRefPubMedGoogle Scholar
  15. Emery, A.F., Norambuena, F., Trushenski, J., and Turchini, G.M., Uncoupling of EPA and DHA in fish nutrition: dietary demand is limited in Atlantic salmon and effectively met by DHA alone, Lipids, 2016, vol. 51, pp. 399–412.CrossRefPubMedGoogle Scholar
  16. Fasolato, L., Novelli, E., Salmaso, L., Corain, L., Camin, F., Perini, M., Antonetti, P., and Balzan, S., Application of nonparametric multivariate analyses to the authentication of wild and farmed European sea bass (Dicentrarchus labrax): results of a survey on fish sampled in the retail trade, J. Agric. Food Chem., 2010, vol. 58, pp. 10979–10988.CrossRefPubMedGoogle Scholar
  17. Garg, M.L., Wood, L.G., Singh, H., and Moughan, P.J., Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets, J. Food Sci., 2006, vol. 71, pp. 66–71.CrossRefGoogle Scholar
  18. Gladyshev, M.I., Gribovskaya, I.V., and Adamovich, V.V., Disappearance of phenol in water samples taken from the Yenisei River and the Krasnoyarsk reservoir, Water Res., 1993, vol. 27, pp. 1063–1070.CrossRefGoogle Scholar
  19. Gladyshev, M.I., Arts, M.T., and Sushchik, N.N., Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA + DHA) from aquatic to terrestrial ecosystems, in Lipids in Aquatic Ecosystems, Arts,M.T., Kainz, M., and Brett, M.T., Eds., New York: Springer-Verlag, 2009, pp. 179–209.CrossRefGoogle Scholar
  20. Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., Makhutova, O.N., Kolmakov, V.I., Kalachova, G.S., Kolmakova, A.A., and Dubovskaya, O.P., Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir, Oecologia, 2011, vol. 165, pp. 521–531.CrossRefPubMedGoogle Scholar
  21. Gladyshev, M.I., Sushchik, N.N., Makhutova, O.N., Kalachova, G.S., and Malyshevskaya, K.K., Differences in fatty acid composition of food and tissues of grayling from the Yenisei River, Dokl. Biochem. Biophys., 2012, vol. 445, no. 1, pp. 194–196.CrossRefPubMedGoogle Scholar
  22. Gladyshev, M.I., Sushchik, N.N., and Makhutova, O.N., Production of EPA and DHA in aquatic ecosystems and their transfer to the land, Prostaglandins Other Lipid Mediators, 2013, vol. 107, pp. 117–126.CrossRefPubMedGoogle Scholar
  23. Gladyshev, M.I., Sushchik, N.N., Gubanenko, G.A., Makhutova, O.N., Kalachova, G.S., Rechkina, E.A., and Malyshevskaya, K.K., Effect of the way of cooking on contents of essential polyunsaturated fatty acids in filets of zander, Czech J. Food Sci., 2014, vol. 32, pp. 226–231.CrossRefGoogle Scholar
  24. Gladyshev, M.I., Kolmakova, O.V., Tolomeev, A.P., Anishchenko, O.V., Makhutova, O.N., Kolmakova, A.A., Kravchuk, E.S., Glushchenko, L.A., Kolmakov, V.I., and Sushchik, N.N. Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? Limnol. Oceanogr., 2015a, vol. 60, pp. 1314–1331.CrossRefGoogle Scholar
  25. Gladyshev, M.I., Makhutova, O.N., Gubanenko, G.A., Rechkina, E.A., Kalachova, G.S., and Sushchik, N.N., Livers of terrestrial production animals as a source of long-chain polyunsaturated fatty acids for humans: An alternative to fish? Eur. J. Lipid Sci. Technol., 2015b, vol. 117, pp. 417–1421.CrossRefGoogle Scholar
  26. Goulden, C.E. and Place, A.R., Fatty acid synthesis and accumulation rates in daphniids, J. Exp. Zool., 1990, vol. 256, pp. 168–178.CrossRefGoogle Scholar
  27. Gritsevskaya, G.L., Kyabileva, G.K., Nikolaeva, L.A., and Semenov, V.N., Hydrology and hydrochemistry of the Solovetsky lakes, Tr. Sev. Otd. Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1972, vol. 6, pp. 5–44.Google Scholar
  28. Guler, G.O., Aktumsek, A., Cakmak, Y.S., Zengin, G., and Citil, O.B., Effect of season on fatty acid composition and n-3/n-6 ratios of zander and carp muscle lipids in Altinapa Dam Lake, J. Food Sci., 2011, vol. 76, pp. C594–C597.CrossRefPubMedGoogle Scholar
  29. Hansen, J.Ø., Berge, G.M., Hillestad, M., Krogdahl, Å., Galloway, T.F., Holm, H., Holm, J., and Ruyter, B., Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels, Aquaculture, 2008, vol. 284, pp. 159–166.Google Scholar
  30. Harris, W.S., Mozaffarian, D., Lefevre, M., Toner, C.D., Colombo, J., Cunnane, S.C., Holden, J.M., Klurfeld, D.M., Morris, M.C., and Whelan, J., Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids, J. Nutr., 2009, vol. 139, pp. 804S–819S.CrossRefPubMedGoogle Scholar
  31. Hartwich, M., Martin-Creuzburg, D., and Wacker, A., Seasonal changes in the accumulation of polyunsaturated fatty acids in zooplankton, J. Plankton Res., 2013, vol. 35, pp. 121–134.CrossRefGoogle Scholar
  32. Henriques, J., Dick, J.R., Tocher, D.R., and Bell, J.G., Nutritional quality of salmon products available from major retailers in the UK: content and composition of n-3 long-chain PUFA, Br. J. Nutr., 2014, vol. 112, pp. 964–975.CrossRefPubMedGoogle Scholar
  33. Hibbeln, J.R., Nieminen, L.R.G., Blasbalg, T.L., Riggs, J.A., and Lands, W.E.M., Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity, Am. J. Clin. Nutr., 2006, vol. 83, pp. 1483S–1493S.CrossRefPubMedGoogle Scholar
  34. Hightower, J.M. and Moore, D., Mercury levels in highend consumers of fish, Environ. Health Perspect., 2003, vol. 111, pp. 604–608. doi doi 10.1289/ehp.5837availableCrossRefPubMedPubMedCentralGoogle Scholar
  35. Hixson, S.M., Sharma, B., Kainz, M.J., Wacker, A., and Arts, M.T., Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems, Environ. Rev., 2015, vol. 23, pp. 414–424.CrossRefGoogle Scholar
  36. Hulbert, A.J., Membrane fatty acids as pacemakers of animal metabolism, Lipids, 2007, vol. 42, pp. 811–819.CrossRefPubMedGoogle Scholar
  37. Hulbert, A.J., Faulks, S., Buttemer, W.A., and Else, P.L., Acyl composition of muscle membranes varies with body size in birds, J. Exp. Biol., 2002, vol. 205, pp. 3561–3569.PubMedGoogle Scholar
  38. Huynh, M.D. and Kitts, D.D., Evaluating nutritional quality of pacific fish species from fatty acid signatures, Food Chem., 2009, vol. 114, pp. 912–918.CrossRefGoogle Scholar
  39. Infante, J.P., Kirwan, R.C., and Brenna, J.T., High levels of docosahexaenoic acid (22:6n-3)-containing phospholipids in high-frequency contraction muscles of hummingbirds and rattlesnakes, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2001, vol. 130, pp. 291–298.CrossRefGoogle Scholar
  40. Kainz, M., Telmer, K., and Mazumder, A., Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish, Sci. Total Environ., 2006, vol. 368, pp. 271–282.CrossRefPubMedGoogle Scholar
  41. Kainz, M., Arts, M.T., and Mazumder, A., Essential versus potentially toxic dietary substances: a seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web, Environ. Pollut., 2008, vol. 155, pp. 262–270.CrossRefPubMedGoogle Scholar
  42. Kainz, M.J., Hager, H.H., Rasconi, S., Kahilainen, K.K., Amundsen, P.-A., and Hayden, B., Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position, Ecosphere, 2017, vol. 8, no. 4, p. e01753. doi 10.1002/ecs2.1753CrossRefGoogle Scholar
  43. Kiessling, A., Pickova, J., Johansson, L., Åsgård, T., Storebakken, T., and Kiessling, K-H., Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age, Food Chem., 2001, vol. 73, pp. 271–284.Google Scholar
  44. Kolanowski, W., Omega-3 LC PUFA contents and oxidative stability of encapsulated fish oil dietary supplements, Int. J. Food Prop., 2010, vol. 13, pp. 498–511.CrossRefGoogle Scholar
  45. Kousoulaki, K., Mørkøre, T., Nengas, I., Berge, R.K., and Sweetman, J., Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.), Aquaculture, 2016, vol. 451, pp. 47–57.CrossRefGoogle Scholar
  46. Kris-Etherton, P.M., Grieger, J.A., and Etherton, T.D., Dietary reference intakes for DHA and EPA, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2009, vol. 81, pp. 99–104.CrossRefGoogle Scholar
  47. Kris-Etherton, P.M., Harris, W.S., and Appel, L.J., Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease, Circulation, 2002, vol. 106, pp. 2747–2757.CrossRefPubMedGoogle Scholar
  48. Larsen, D., Quek, S.Y., and Eyres, L., Effect of cooking method on the fatty acid profile of New Zealand king salmon (Oncorhynchus tshawytscha), Food Chem., 2010, vol. 119, pp. 785–790.CrossRefGoogle Scholar
  49. Lauritzen, L., Hansen, H.S., Jorgensen, M.H., and Michaelsen, K.F., The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina, Progr. Lipid Res., 2001, vol. 40, pp. 1–94.CrossRefGoogle Scholar
  50. Leaver, M.J., Taggart, J.B., Villeneuve, L., Bron, J.E., Guy, D.R., Bishop, S.C., Houston, R.D., Matika, O., and Tocher, D.R., Heritability and mechanisms of n-3 long chain polyunsaturated fatty acid deposition in the flesh of Atlantic salmon, Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2011, vol. 6, pp. 62–69.Google Scholar
  51. Leonov, A.V., Filatov, N.N., Zdorovennov, R.E., and Zdorovennova, G.E., Mathematical modeling of the ecosystem functioning conditions in the Chupa estuary of the White Sea: transformation of organogenic substances and bioproductivity of the marine environment, Water Resour., 2006, vol. 33, no. 5, pp. 543–567.CrossRefGoogle Scholar
  52. Litzow, M.A., Bailey, K.M., Prahl, F.G., and Heintz, R., Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis, Mar. Ecol.: Progr. Ser., 2006, vol. 315, pp. 1–11.CrossRefGoogle Scholar
  53. Mairesse, G., Thomas, M., Gardeur, J.-N., and Brun-Bellut, J., Effects of geographic source rearing system, and season on the nutritional quality of wild and farmed Perca fluviatilis, Lipids, 2006, vol. 41, pp. 221–229.CrossRefPubMedGoogle Scholar
  54. McNamara, R.K. and Carlson, S.E., Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2006, vol. 75, pp. 329–349.CrossRefGoogle Scholar
  55. Moths, M.D., Dellinger, J.A., Holub, B., Ripley, M.P., McGraw, J.E. and Kinnunen, R.E., Omega-3 fatty acids in fish from the Laurentian Great Lakes tribal fisheries, Hum. Ecol. Risk Assess., 2013, vol. 19, pp. 1628–1643.CrossRefGoogle Scholar
  56. Nagasaka, R., Gagnon, C., Swist, E., Rondeau, I., Massarelli, I., Cheung, W., and Ratnayake, W.M.N., EPA and DHA status of South Asian and white Canadians living in the national capital region of Canada, Lipids, 2014, vol. 49, pp. 1057–1069.CrossRefPubMedGoogle Scholar
  57. Norris, P.C and Dennis, E.A., Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 8517–8522.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Onezhskoe ozero. Atlas (Atlas of the Onega Lake), Filatov, N.N., Ed., Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2010.Google Scholar
  59. Pichugin, M.Yu., The development of an artificial hybrid and revealing elements of reproductive isolation between sympatric forms of Dryagin’s char and Salvelinus alpinus complex (Salmonidae) from Sobachye Mountain Lake (Taimyr), J. Ichthyol., 2009, vol. 49, no. 3, pp. 236–248.CrossRefGoogle Scholar
  60. Plourde, M. and Cunnane, S.C., Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements, Appl. Physiol. Nutr. Metab., 2007, vol. 32, pp. 619–634.CrossRefPubMedGoogle Scholar
  61. Robert, S.S., Production of eicosapentaenoic and docosahexaenoic acid-containing oils in transgenic land plants for human and aquaculture nutrition, Mar. Biotechnol., 2006, vol. 8, pp. 103–109.CrossRefPubMedGoogle Scholar
  62. Rossi, S., Sabates, A., Latasa, M., and Reyes, E., Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean, J. Plankton Res., 2006, vol. 28, pp. 551–562.CrossRefGoogle Scholar
  63. Rubio-Rodriguez, N., Beltran, S., Jaime, I., de Diego, S.M., Sanz, M., and Carballido, J.R., Production of omega-3 polyunsaturated fatty acid concentrates: a review, Innovative Food Sci. Emerging Technol., 2010, vol. 11, pp. 1–12.CrossRefGoogle Scholar
  64. Ruffle, B., Burmaster, D.E., Anderson, P.D., and Gordon, H.D., Lognormal distributions for fish consumption by the general U.S. population, Risk Anal., 1994, vol. 14, pp. 395–404.CrossRefGoogle Scholar
  65. Ruiz-Lopez, N., Sayanova, O., Napier, J.A., and Haslam, R.P., Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants, J. Exp. Bot., 2012, vol. 63, pp. 2397–2410.CrossRefPubMedGoogle Scholar
  66. Rusakova, S.A., Feeding of the vendace from Goreloe and Krasnoe Bol’shoe lakes, Tr. Sev. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1972, vol. 6, pp. 85–89.Google Scholar
  67. Sanden, M., Stubhaug, I., Berntssen, M.H.G., Lie, O., and Torstensen, B.E., Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids, J. Agric. Food Chem., 2011, vol. 59, pp. 12697–12706.CrossRefPubMedGoogle Scholar
  68. SanGiovanni, J.P. and Chew, E.Y., The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina, Prog. Retinal Eye Res., 2005, vol. 24, pp. 87–138.CrossRefGoogle Scholar
  69. Sayanova, O.V. and Napier, J.A., Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants, Phytochemistry, 2004, vol. 65, pp. 147–158.CrossRefPubMedGoogle Scholar
  70. Stone, D.A.J., Oliveira, A.C.M., Plante, S., Smiley, S., Bechtel, P., and Hardy, R.W., Enhancing highly unsaturated omega-3 fatty acids in phase-fed rainbow trout (Oncorhynchus mykiss) using Alaskan fish oils, Aquacult. Nutr., 2011, vol. 17, pp. E501–E510.CrossRefGoogle Scholar
  71. Strandberg, U., Hiltunena, M., Jelkanen, E., Taipale, S.J., Kainz, M.J., Brett, M.T., and Kankaala, P., Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes, Sci. Total Environ., 2015, vol. 536, pp. 858–865.CrossRefPubMedGoogle Scholar
  72. Sushchik, N.N., Gladyshev, M.I., Kalachova, G.S., Makhutova, O.N., and Ageev, A.V., Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei River, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2006, vol. 145, pp. 278–287.CrossRefGoogle Scholar
  73. Sushchik, N.N., Rudchenko, A.E., and Gladyshev, M.I., Effect of season and trophic level on fatty acid composition and content of four commercial fish species from Krasnoyarsk reservoir (Siberia, Russia), Fish. Res., 2017, vol. 187, pp. 178–187.CrossRefGoogle Scholar
  74. Teoh, C.Y. and Ng, W.K., The implications of substituting dietary fish oil with vegetable oils on the growth performance, fillet fatty acid profile and modulation of the fatty acid elongase, desaturase and oxidation activities of red hybrid tilapia, Oreochromis sp., Aquaculture, 2016, vol. 465, pp. 311–322.CrossRefGoogle Scholar
  75. Teoh, C.Y., Turchini, G.M., and Ng, W.K., Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend, Aquaculture, 2011, vol. 312, pp. 126–136.CrossRefGoogle Scholar
  76. Thanuthong, T., Francis, D.S., Senadheera, S.D., Jones, P.L., and Turchini, G.M., Fish oil replacement in rainbow trout diets and total dietary PUFA content: I) Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy, Aquaculture, 2011, vol. 320, pp. 82–90.CrossRefGoogle Scholar
  77. Tocher, D.R., Metabolism and functions of lipids and fatty acids in teleost fish, Rev. Fish. Sci., 2003, vol. 11, pp. 107–184.CrossRefGoogle Scholar
  78. Tocher, D.R., Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective, Aquaculture, 2015, vol. 449, pp. 94–107.CrossRefGoogle Scholar
  79. Torstensen, B.E., Froyland, L., Ornsrud, R., and Lie, O., Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils, Food Chem., 2004, vol. 87, 567–580.CrossRefGoogle Scholar
  80. Turchini, G.M., Francis, D.S., Keast, R.S.J., and Sinclair, A.J., Transforming salmonid aquaculture from a consumer to a producer of long chain omega-3 fatty acids, Food Chem., 2011, vol. 124, pp. 609–614.CrossRefGoogle Scholar
  81. Turner, N., Else, P.L., and Hulbert, A.J., Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism, Naturwissenschaften, 2003, vol. 90, pp. 521–523.CrossRefPubMedGoogle Scholar
  82. Turner, N., Else, P.L., and Hulbert, A.J., An allometric comparison of microsomal membrane lipid composition and sodium pump molecular activity in the brain of mammals and birds, J. Exp. Biol., 2005, vol. 208, pp. 371–381.CrossRefPubMedGoogle Scholar
  83. Wall, R., Ross, R.P., Fitzgerald, G.F., and Stanton, C., Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids, Nutr. Rev., 2010, vol. 68, pp. 280–289.CrossRefPubMedGoogle Scholar
  84. Ward, O.P. and Singh, A., Omega-3/6 fatty acids: alternative sources of production, Process Biochem., 2005, vol. 40, pp. 3627–3652.CrossRefGoogle Scholar
  85. Weber, J.-M., Metabolic fuels: regulating fluxes to select mix, J. Exp. Biol., 2011, vol. 214, pp. 286–294.CrossRefPubMedGoogle Scholar
  86. Young, L.R. and Nestle, M., Portion sizes in dietary assessment, Nutr. Rev., 1995, vol. 53, pp. 149–158.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. I. Gladyshev
    • 1
    • 2
  • L. A. Glushchenko
    • 2
  • O. N. Makhutova
    • 1
    • 2
  • A. E. Rudchenko
    • 2
  • S. P. Shulepina
    • 2
  • O. P. Dubovskaya
    • 1
    • 2
  • I. V. Zuev
    • 2
  • V. I. Kolmakov
    • 1
    • 2
  • N. N. Sushchik
    • 1
    • 2
  1. 1.Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations