Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 3, pp 271–285 | Cite as

Phylogeny of Salmonoid Fishes (Salmonoidei) Based on mtDNA COI Gene Sequences (Barcoding)

  • V. S. Artamonova
  • O. V. Kolmakova
  • E. A. Kirillova
  • A. A. Makhrov
Article
  • 45 Downloads

Abstract

We have analyzed the partial sequences of the mitochondrial COI gene along with the amino acid sequences of cytochrome oxidase subunit I, encoded by this gene region, in representatives of 11 genera of salmonoid fish. For amino acid sequences, two alternative networks are constructed with outgroups represented by either Esocoidei or Osmeroidei as the supposed ancestral groups. This way, Osmeroidei appear to be closer to the salmonoid fish than Esocoidei, and their presence in the network as an outgroup explains the available data on the morphology and karyology of salmonoids much better. A number of the results of this study are fundamentally new. In particular, the slowing down of the molecular evolution of the grayling (Thymallidae) is shown. We conclude that the charr (Salvelinus) is one of the modern genera of salmonoids closest to their ancestor. The hypothesis of the phylogenetic proximity of the genera Brachymystax, Hucho, and Salmo has been confirmed. We also discuss the possibility that it is namely the changes in the amino acid sequence of cytochrome oxidase subunit I that lead to postzygotic reproductive isolation between taxa.

Keywords

evolution network molecular clock amino acid sequence reproductive isolation immobilization fishes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.E. and Maitland, P.S., Arctic charr in Britain and Ireland—15 species or one? Ecol. Freshwater Fish, 2007, vol. 16, pp. 20–28.CrossRefGoogle Scholar
  2. Alekseev, S.S., The data on vomer initiation in some salmon fishes (Salmonoidei) related to their phylogeny, Zool. Zh., 1993, vol. 72, no. 4, pp. 97–105.Google Scholar
  3. Altukhov, Yu.P., Salmenkova, E.A., and Omel’chenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmon Fishes), Moscow: Nauka, 1997.Google Scholar
  4. Alexandrou, M.A., Swartz, B.A., Matzke, N.J., and Oakley, T.H., Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae, Mol. Phylogenet. Evol., 2013, vol. 69, pp. 514–523.CrossRefPubMedGoogle Scholar
  5. Allendorf, F.W. and Thorgaard, G.H., Tetraploidy and the evolution of Salmonid fishes, in Evolutionary Genetics of Fishes, New York: Plenum, 1984, pp. 1–53.Google Scholar
  6. Artamonova, V.S. and Makhrov, A.A., Unintentional genetic processes in artificially maintained populations: proving the leading role of selection in evolution, Russ. J. Genet., 2006, vol. 42, no. 3, pp. 234–246.CrossRefGoogle Scholar
  7. Artamonova, V.S. and Makhrov, A.A., Geneticheskie metody v lososevodstve i forelevodstve: ot traditsionnoi selektsii do nanobiotekhnologii (Genetic Analysis in Salmon and Trout Farming: From Classical Breeding to Nanotechnologies), Moscow: KMK, 2015.Google Scholar
  8. Atlas presnovodnykh ryb Rossii (Atlas of Freshwater Fishes of Russia), Reshetnikov, Yu.S., Ed., Moscow: Nauka, 2003, vol. 1.Google Scholar
  9. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.CrossRefPubMedGoogle Scholar
  10. Behnke, R.J., The application of cytogenetic and biochemical systematics to phylogenetic problems in the family Salmonidae, Trans. Am. Fish. Soc., 1970, vol. 99, no. 1, pp. 237–248.CrossRefGoogle Scholar
  11. Berg, L.S., Origin of trouts and other freshwater salmon fishes, in Pamyati akademika Segeya Alekseevicha Zernova (In Memoriam of Academician Sergei Alekseevich Zernov), Moscow: Akad. Nauk SSSR, 1948, pp. 159–172.Google Scholar
  12. Bolotov, I.N., Aksenova, O.V., Bespalaya, Y.V., Gofarov, M.Y., Kondakov, A.V., Paltser, I.S., Stefansson, A., Travina, O.V., and Vinarski, M.V., Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiologia, 2017, vol. 787, pp. 73–98.Google Scholar
  13. Bolotov, I.N., Vikhrev, I.V., Bespalaya, Yu.V., Gofarov, M.Y., Kondakov, A.V., Konopleva, E.S., Bolotov, N.N., and Lyubas, A.A., Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida), Mol. Phylogenet. Evol., 2016, vol. 103, pp. 104–121.CrossRefPubMedGoogle Scholar
  14. Campbell, M.A., López, J.A., Sado, T., and Miya, M., Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences, Gene, 2013, vol. 530, pp. 57–65.CrossRefPubMedGoogle Scholar
  15. Chereshnev, I.A., Volobuev, V.V., Shestakov, A.V., and Frolov, S.V., Lososevidnye ryby severo-vostoka Rossii (Salmonidae Fishes of the Northeast of Russia), Vladivostok: Dal’nauka, 2002.Google Scholar
  16. Chernavin, V.V., Systematic grouping of some Salmonoidei fishes based on their osteological features, Izv. Gos. Inst. Opyt. Agron., 1923, vol. 1, no. 3, pp. 103–106.Google Scholar
  17. Chernenko, E.V., Evolution and cytotaxonomy of salmon fishes of family Salmonidae, Vopr. Ikhtiol., 1969, vol. 9, no. 6, pp. 971–980.Google Scholar
  18. Cline, E., Marketplace substitution of Atlantic salmon for Pacific salmon in Washington State detected by DNA barcoding, Food Res. Int., 2012, vol. 45, pp. 388–393.CrossRefGoogle Scholar
  19. Crespi, B.J. and Fulton, M.J., Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny, Mol. Phylogenet. Evol., 2004, vol. 31, pp. 658–679.CrossRefPubMedGoogle Scholar
  20. Crête-Lafrenière, A., Weir, L.K., and Bernatchez, L., Framing the Salmonidae family phylogenetic portrait: A more complete picture from increased taxon sampling, PLoS One, 2012, vol. 7, no. 10, p. e46662.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dorofeeva, E.A., Systematics and the history of distribution of European salmons of genus Salmo, Vopr. Ikhtiol., 1998, vol. 38, no. 4, pp. 437–447.Google Scholar
  22. Dorofeeva, E.A., Zinov’ev, E.A., Klyukanov, V.A., Reshetnikov, Yu.S., Savvaitova, K.A., and Shaposhnikova, G.Kh., Modern studies in phylogeny and classification of salmon fishes, Vopr. Ikhtiol., 1980, vol. 20, no. 5, pp. 771–791.Google Scholar
  23. Evolution Illuminated. Salmon and Their Relatives, Hendry A.P. and Stearns S.C., Eds., Oxford: Oxford Univ. Press, 2004.Google Scholar
  24. Flegr, J., Frozen Evolution, Prague: Charles Univ., 2008.Google Scholar
  25. Frolov, S.V., Izmenchivost’ i evolyutsiya kariotipov lososevykh ryb (Variability and Evolution of Karyotypes of Salmon Fishes), Vladivostok: Dal’nauka, 2000.Google Scholar
  26. Glubokovskii, M.K., Evolyutsionnaya biologiya lososevykh ryb (Evolutionary Biology of Salmon Fishes), Moscow: Nauka, 1995.Google Scholar
  27. Gross, R., Gum, B., Reiter, R., and Kühn, R., Genetic introgression between Arctic charr (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in Bavarian hatchery stocks inferred from nuclear and mitochondrial DNA markers, Aquacult. Int., 2004, vol. 12, pp. 19–32.CrossRefGoogle Scholar
  28. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.Google Scholar
  29. Hartley, S.E., The chromosomes of salmonid fishes, Biol. Rev., 1987, vol. 62, no. 3, pp. 197–214.CrossRefGoogle Scholar
  30. Hebert, P.D.H., Cywinska, A., Ball, S.L., and De Waard, J.R., Biological identification through DNA barcodes, Proc. R. Soc. London, Ser. B, 2003, vol. 270, pp. 313–321.CrossRefGoogle Scholar
  31. Horreo, J.L., Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances, PeerJ., 2017, vol. 5, art. ID e3828.Google Scholar
  32. Huson, D.H. and Bryant, D., Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 2006, vol. 23, pp. 254–267.CrossRefPubMedGoogle Scholar
  33. Karpevich, A.F., Agapov, V.S., and Magomedov, G.M., Akklimatizatsiya i kul’tivirovanie lososevykh ryb-introdutsintov (Naturalization and Farming of Introduced Salmon Fishes), Moscow: VNIRO, 1991.Google Scholar
  34. Kazakov, R.V., The history of exploration and economic value of Atlantic salmon and brown trout, Sb. Nauchn. Tr.-Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1988, no. 286, pp. 111–129.Google Scholar
  35. Kendall, A.W., Jr. and Behnke, R.J., Salmonidae: development and relationships, in Ontogeny and Systematics of Fishes, Moser, H.G.,, Eds., Lawrence: Allen Press, 1984, pp. 142–149.Google Scholar
  36. Knudsen, R., Klemetsen, A., Alekseyev, S., Adams, C.E., and Power, M., The role of Salvelinus in contemporary studies of evolution, trophic ecology and anthropogenic change, Hydrobiologia, 2016, vol. 783, pp. 1–9.CrossRefGoogle Scholar
  37. Korovina, V.M., The structure of fishes of family Salmonidae: egg structure and specific morphogenesis, in Morfologiya i sistematika ryb (Morphology and Systematics of Fishes), Leningrad: Zool. Inst., Akad. Nauk SSSR, 1978, pp. 40–52.Google Scholar
  38. Kuderskii, L.A., Origin of the lake salmons, in Rybokhozyaistvennoe izuchenie vnutrennikh vodoemov (Fishery Study of Inland Reservoirs), Leningrad: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1977, no. 19, pp. 34–39.Google Scholar
  39. Kuzishchin, K.V., Development and adaptive role of intraspecific ecological diversity of salmon fishes (family Salmonidae), Doctoral (Biol.) Dissertation, Moscow: Moscow State Univ., 2010.Google Scholar
  40. Lappin, F.M., Shaw, R.L., and Macqueen, D.J., Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis, Mar. Genomics, 2016, vol. 30, pp. 15–26.CrossRefPubMedGoogle Scholar
  41. Li, J., Xia, R., McDowall, R.M., Lypez, J.A., Lei, G., and Fu, C., Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes, Mol. Phylogenet. Evol., 2010, vol. 57, pp. 932–936.CrossRefPubMedGoogle Scholar
  42. Li, Y., Park, J.-S., Deng, J.H., and Bai, Y., Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex, J. Bioenerg. Biomembr., 2006, vol. 38, pp. 283–291.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lysenko, L.F., Atlanticheskii losos’: biologiya i proiskhozhdenie (Atlantic Salmons: Biology and Origin), Murmansk: Polar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1994.Google Scholar
  44. Lyubitel’skoe rybolovstvo i sokhranenie lososevykh ryb v Rossii (Amateur Fishing and Conservation of Salmon Fishes in Russia), Moscow: Fond Russkii Losos’, 2010.Google Scholar
  45. Lyubishchev, A.A., Problemy flory, sistematiki i evolyutsii organizmov (Forms, Systematics, and Evolution of Organisms), Moscow: Nauka, 1982.Google Scholar
  46. Macqueen, D.J. and Johnston, I.A., A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification, Proc. R. Soc. London, Ser. B, 2014, vol. 281, art. ID 20132881.Google Scholar
  47. Makhrov, A.A., A narrowing of the phenotypic diversity range after large rearrangements of the karyotype in Salmonidae: The relationship between saltational genome rearrangements and gradual adaptive evolution, Genes, 2017, vol. 8, p. 297.CrossRefPubMedCentralGoogle Scholar
  48. Makhrov, A.A. and Bolotov, I.N., Does freshwater pearl mussel (Margaritifera margaritifera) change the lifecycle of Atlantic salmon (Salmo salar)? Adv. Gerontol., 2011, vol. 1, no. 2, pp. 186–194.CrossRefGoogle Scholar
  49. Makhrov, A.A. and Lajus, D.L., Post-glacial colonization of the North European seas by Pacific fishes and lamprey, Contemp. Probl. Ecol., 2018, vol. 11, no. 3, pp. 247–258.CrossRefGoogle Scholar
  50. Makhrov, A.A., Ponomareva, M.V., Khaimina, O.V., Gilepp, V.E., Efimova, O.V., Nechaeva, T.A., and Vasilenkova, T.I., Abnormal development of gonads of dwarf females and low survival of their offspring as the cause of rarity of resident populations of Atlantic salmon (Salmo salar L.), Russ. J. Dev. Biol., 2013, vol. 44, no. 6, pp. 326–335.CrossRefGoogle Scholar
  51. Makoedov, A.N., Kariologiya, biokhimicheskaya genetika i populyatsionnaya fenetika lososevidnykh ryb Sibiri i Dal’nego Vostoka: sravnitel’nyi aspekt (Comparison of Caryology, Biochemical Genetics, and Population Phenetics of Salmon Fishes of Siberia and Far East), Moscow: Psikhologiya, 1999.Google Scholar
  52. Mamkaev, Yu.V., Comparative morphology of higher and lower groups of the same phylogenetic branch, Zh. Obshch. Biol., 1968, vol. 29, no. 1, pp. 48–56.PubMedGoogle Scholar
  53. Matveev, V. and Okada, N., Retroposons of salmonoid fishes (Actinopterygii: Salmonoidei) and their evolution, Gene, 2009, vol. 434, pp. 16–28.CrossRefPubMedGoogle Scholar
  54. Matveev, V., Nishihara, H., and Okada, N., Novel SINE families from salmons validate Parahucho (Salmonidae) as a distinct genus and give evidence that SINEs can incorporate LINE-related 3'-tails of other SINEs, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1656–1666.CrossRefPubMedGoogle Scholar
  55. Mina, M.V., Mikroevolyutsiya ryb. Evolyutsionnye aspekty feneticheskogo raznoobraziya (Microevolution of Fishes: Evolutionary Aspects of Phenetic Diversity), Moscow: Nauka, 1986.Google Scholar
  56. Montgomery, D.R., King of Fish. The Thousand-Year Run of Salmon, New York: Westview, 2003.Google Scholar
  57. Morrison, D.A., Networks in phylogenetic analysis: new tools for population biology, Int. J. Parasitol., 2005, vol. 35, pp. 567–582.CrossRefPubMedGoogle Scholar
  58. Muñoz-Colmenero, M., Juanes, F., Dopico, E., Martinez, J.L., and Garcia-Vazquez, E., Economy matters: A study of mislabeling in salmon products from two regions, Alaska and Canada (Northwest of America) and Asturias (Northwest of Spain), Fish. Res., 2017, vol. 195, pp. 180–185.Google Scholar
  59. Noakes, D.L.G., Skulason, S., and Snorrason, S.S., Alternative life-history styles in salmonine fishes with emphasis on arctic charr, Salvelinus alpinus, in Alternative Life-History Styles of Animals, Dordrecht: Kluwer, 1989, pp. 329–346.Google Scholar
  60. Norden, C.R., Comparative osteology of representative salmonid fishes, with particular reference to the grayling (Thymallus arcticus) and its phylogeny, J. Fish. Res. Board Can., 1961, vol. 18, no. 5, pp. 679–791.CrossRefGoogle Scholar
  61. Oakley, T.H. and Phillips, R.B., Phylogeny of salmonine fishes based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmons are not sister taxa, Mol. Phyl. Evol., 1999, vol. 11, no. 3, pp. 381–393.CrossRefGoogle Scholar
  62. Ojima, Y., Maeki, K., Takayama, S., and Nogusa, S., A cytotaxonomic study on the Salmonidae, Nucleus, 1963, vol. 6, no. 2, pp. 91–98.Google Scholar
  63. Osinov, A.G. and Lebedev, V.S., Genetic divergence and phylogeny of the Salmoninae based on allozyme data, J. Fish Biol., 2000, vol. 57, no. 2, pp. 354–381.Google Scholar
  64. Osinov, A.G. and Lebedev, V.S., Salmonid fishes (Salmonidae, Salmoniformes): the systematic position in the superorder Protacanthopterygii, the main stages of evolution, and molecular dating, J. Ichthyol., 2004, vol. 44, no. 9, pp. 690–715.Google Scholar
  65. Pankova, M.V. and Brykov, Vl.A., Divergence of introns in the paralogous growth hormone genes of salmonid fish indicates the effect of selection, Dokl. Biol. Sci., 2013, vol. 451, no. 1, pp. 231–234.CrossRefPubMedGoogle Scholar
  66. Pavlov, D.A. and Osinov, A.G., Main features of early ontogeny in salmonids (Salmoniformes) and other representatives of the Protacanthopterygii in relation to the phylogeny, J. Ichthyol., 2004, vol. 44, no. 4, pp. 267–283.Google Scholar
  67. Pavlov, D.S. and Savvaitova, K.A., On the problem of ratio of anadromy and residence in salmonids (Salmonidae), J. Ichthyol., 2008, vol. 48, no. 9, pp. 778–791.CrossRefGoogle Scholar
  68. Pavlov, D.S., Savvaitova, K.A., Kuzishchin, K.V., Gruzdeva, M.A., Pavlov, S.D., Mednikov, B.M., and Maksimov, S.V., Tikhookeanskie blagorodnye lososi i foreli Azii (Pacific Noble Salmons and Trouts in Asia), Moscow: Nauchnyi Mir, 2001.Google Scholar
  69. Phillips, R.B. and Oakley, T.H., Phylogenetic relationships among the Salmoninae based on nuclear and mitochondrial DNA sequences, in Molecular Systematics of Fishes, Kocher, T.D. and Stepien, C.A., Eds., London: Academic, 1997, pp. 145–162.CrossRefGoogle Scholar
  70. Phillips, R. and Rab, P., Chromosome evolution in Salmonidae (Pisces): an update, Biol. Rev., 2001, vol. 76, pp. 1–25.CrossRefPubMedGoogle Scholar
  71. Phillips, R.B., Matsuoka, M.P., Konkol, N.R., and McKay, S., Molecular systematics and evolution of the growth hormone introns in the Salmoninae, Environ. Biol. Fish., 2004, vol. 69, pp. 433–440.CrossRefGoogle Scholar
  72. Ramsden, S.D., Brinkmann, H., Hawryshyn, C.W., and Taylor, J.S., Mitogenomics and the sister of Salmonidae, Trends Ecol. Evol., 2003, vol. 18, pp. 607–610.CrossRefGoogle Scholar
  73. Rasmussen, R.S. Morrissey, M.T., and Hebert, P.D.N., DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America, J. Agric. Food Chem., 2009, vol. 57, pp. 8379–8385.CrossRefPubMedGoogle Scholar
  74. Rassadnikov, O.A., Morphology of seismosensory system of some salmon fishes, in Populyatsionnaya biologiya i sistematika lososevykh (Population Biology and Systematics of Salmon Fishes), Vladivostok: Dal’nevost. Nauch. Tsentr, Akad. Nauk SSSR, 1980, pp. 104–112.Google Scholar
  75. Rees, H., The question of polyploidy in the Salmonidae, Chromosoma, 1964, vol. 15, no. 3, pp. 275–279.CrossRefPubMedGoogle Scholar
  76. Regan, C.T., The systematic arrangement of the fishes of the family Salmonidae, Ann. Mag. Nat. Hist., 1914, vol. 13, pp. 405–408.CrossRefGoogle Scholar
  77. Reist, J.D., Vuorinen, J., and Bodaly, R.A., Genetic and morphological identification of coregonid hybrid fishes from arctic Canada, Pol. Arch. Hydrobiol., 1992, vol. 39, pp. 551–561.Google Scholar
  78. Robertson, F.M., Gundappa, M.K., Grammes, F., Hvidsten, T.R., Redmond, A.K., Lien, S., Martin, S.A.M., Holland, P.W.H., Sandve, S.R., and Macqueen, D.J., Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification, Genome Biol., 2017, vol. 18, p. 111.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rol’skii, A.Yu., Makhrov, A.A., and Artamonova, V.S., Speciation of marine rockfishes of genus Sebastes from Atlantic and Arctic oceans, Materialy III mezhdunarodnoi konferentsii posvyashchennoi 130-letiyu sa dnya rozhdeniya N.I. Vavilova i 110-letiyu so dnya osnovaniya Gosudarstvennogo Darvinovskogo muzeya “Sovremennye problemy biologicheskoi evolyutsii,” g. Moskva, 16–20 oktyabrya 2017 g. (Proc. III Int. Conf. Dedicated to the 130th Anniversary of N.I. Vavilov and 110th Anniversary of Establishment of the State Darwin Museum “Modern Biological Evolution,” Moscow, October 16–20, 2017), Moscow, 2017, pp. 101–104.Google Scholar
  80. Rozhnov, S.V., Vavilov’s law of homologous series and archaic diversity according to paleontology, in Evolyutsiya biosfery i bioraznoobraziya (Evolution of Biosphere and Biological Diversity), Moscow: KMK, 2006, pp. 134–146.Google Scholar
  81. Sanford, C.P.J., The phylogenetic relationships of salmonoid fishes, Bull. Br. Mus. Nat. Hist. Zool., 1990, vol. 56, no. 2, pp. 145–153.Google Scholar
  82. Savvaitova, K.A., Arkticheskie gol’tsy (Arctic Chars), Moscow: Agropromizdat, 1989.Google Scholar
  83. Shedko, S.V., Miroshnichenko, I.L., and Nemkova, G.A., Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of nuclear RAG1 gene, Russ. J. Genet., 2012, vol. 48, no. 5, pp. 575–579.CrossRefGoogle Scholar
  84. Shedko, S.V., Miroshnichenko, I.L., and Nemkova, G.A., Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of mtDNA data, Russ. J. Genet., 2013, vol. 49, pp. 623–637.CrossRefGoogle Scholar
  85. Shmal’gauzen, I.I., Resistance of organic forms (ontogenesis) during evolution, Zh. Obshch. Biol., 1945, vol. 6, no. 1, pp. 3–25.Google Scholar
  86. Shuntov, V.P. and Temnykh, O.S., Tikhookeanskie lososi v morskikh i okeanicheskikh ekosistemakh (Pacific Salmons in Marine and Ocean Ecosystems), Vladivostok: TINRO-Tsentr, 2008, vol. 1.Google Scholar
  87. Sidorov, G.P. and Reshetnikov, Yu.S., Lososeobraznye ryby vodoemov evropeskogo Severo-Vostoka (Salmoniformes Fishes from Reservoirs of European Northeast), Moscow: KMK, 2014.Google Scholar
  88. Soin, S.G., Types of development of salmon fishes and their taxonomic role, Vopr. Ikhtiol., 1980, vol. 20, no. 1, pp. 65–72.Google Scholar
  89. Sutherland, B.J.G., Gosselin, T., Normandeau, E., Lamothe, M., Isabel, N., Audet, C., and Bernatchez, L., Salmonid chromosome evolution as revealed by a novel method for comparing RADseq linkage maps, Genome Biol. Evol., 2016, vol. 8, pp. 3600–3617.PubMedPubMedCentralGoogle Scholar
  90. Sychevskaya, E.K., Origin of Coregonus fishes in terms of historical development of salmons (Salmonoidea), inBiologiya sigovykh ryb (Biology of Coregonus Fishes), Moscow: Nauka, 1988, pp. 17–28.Google Scholar
  91. Tchernavin, V., The origin of salmon. Is its ancestry marine or freshwater? Salmon Trout Mag., 1939, vol. 95, pp. 120–140.Google Scholar
  92. Vasil’ev, V.P., Polyploidy of fishes and evolution of karyotypes of salmon fishes (Salmonidae), Zh. Obshch. Biol., 1977, vol. 38, no. 3, pp. 380–392.Google Scholar
  93. Viktorovskii, R.M., Mekhanizmy vidoobrazovaniya u gol’tsov Krobotskogo ozera (Speciation Mechanisms of Chars from the Kronotskoe Lake), Moscow: Nauka, 1978.Google Scholar
  94. Vladukov, V.D., A Review of Salmonid Genera and Their Broad Geographial Distribution, Transactions of the Royal Society of Canada, Series 4, Section 3, Ottawa: R. Soc. Can., 1963, vol. 1, pp. 459–504.Google Scholar
  95. Wang, Y., Guo, R., Li, H., Zhang, X., Du, J., and Song, Z., The complete mitochondrial genome of the Sichuan taimen (Hucho bleekeri): repetitive sequences in the control region and phylogenetic implications for Salmonidae, Mar. Genomics, 2011, vol. 4, pp. 221–228.CrossRefPubMedGoogle Scholar
  96. Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., and Hebert, P.D.N., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc., B, 2005, vol. 360, pp. 1847–1857.CrossRefGoogle Scholar
  97. Willson, M.F. and Halupka, K.C., Anadromous fish as keystone species in vertebrate communities, Conserv. Biol., 1995, vol. 9, no. 3, pp. 489–497.CrossRefGoogle Scholar
  98. Wilson, M.V.H. and Li, G.-Q., Osteology and systematic position of the Eocene salmonid †Eosalmo driftwoodensis Wilson from western North America, Zool. J. Linn. Soc., 1999, vol. 125, no. 3, pp. 279–311.CrossRefGoogle Scholar
  99. Yasuike, M., Jantzen, S., Cooper, G.A., Leder, E., Davidson, W.S., and Koop, B.F., Grayling (Thymallinae) phylogeny within salmonids: complete mitochondrial DNA sequences of Thymallus arcticus and Thymallus thymallus, J. Fish Biol., 2010, vol. 76, pp. 395–400.CrossRefPubMedGoogle Scholar
  100. Zelinsky, Yu.P. and Makhrov, A.A., Chromosomal variability, genome reorganization in phylogeny, and the systematics of Salmo and Parasalmo species (Salmonidae), J. Ichthyol., 2001, vol. 41, no. 3, pp. 209–216.Google Scholar
  101. Zelinsky, Yu.P. and Makhrov, A.A., Homological series by chromosome number and the genome rearrangements in the phylogeny of Salmonoidei, Russ. J. Genet., 2002, vol. 38, no. 10, pp. 1115–1120.CrossRefGoogle Scholar
  102. Zhivotovskii, L.A., Evolutionary history of Pacific salmons and trouts, Tr. VNIRO, 2015, vol. 157, pp. 4–23.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Artamonova
    • 1
    • 2
  • O. V. Kolmakova
    • 2
  • E. A. Kirillova
    • 1
  • A. A. Makhrov
    • 1
    • 2
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biophysics, Krasnoyarsk Science Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations