Advertisement

Contemporary Problems of Ecology

, Volume 10, Issue 7, pp 748–760 | Cite as

Carbon Balance in Forest Ecosystems of Southern Part of Moscow Region under a Rising Aridity of Climate

  • I. N. KurganovaEmail author
  • V. O. Lopes de Gerenyu
  • T. N. Myakshina
  • D. V. Sapronov
  • I. Yu. Savin
  • E. V. Shorohova
Article

Abstract

This study estimates carbon balance in a mixed mature forest on sod-podzolic sandy-loamy soil (Albeluvisols sandy, the Prioksko-Terrasny Nature Reserve) and in a secondary deciduous forest at the Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Sciences, Russian Academy of Sciences (gray forest loamy soil, Luvisols loamy). CO2 emissions from soils have been continuously measured every week since 1998. Net primary production was estimated in 2000–2014 by remote sensing using the normalized difference vegetation index. Long-term weather monitoring has revealed a distinctive trend toward increasing aridity of climate in the southern part of Moscow region in the observation period (1998–2014). Based on long-term ground-based and satellite monitoring data, this study shows that in the growing season, mixed and deciduous forests of the southern part of Moscow region are the sink of carbon with a mean flux of 41–112 g C m–2, depending on the contribution of root respiration. Taking into account the CO2 emissions from soils during the cold season, the forests are very likely to function as sources of atmospheric carbon at an amount of 30–100 g C m–2 yr–1, sometimes reaching very significant values of C flux (170–300 g C m–2 yr–1). In mature forest ecosystems, a significant influence on the quantitative estimate of the C balance is hampered by the CO2 emission activity from coarse woody debris, which can reach up to 14% of the total losses of C during the decomposition of soil organic matter in the mixed forest, which turns it into a persistent source of CO2 to the atmosphere. It is shown that the sink function of the forest ecosystems was more pronounced in dry years, whereas the excessive wetness diminishes their sink potential, turning the forests into sources of carbon dioxide.

Keywords

carbon balance vegetation index CO2 emission woody debris mixed and deciduous forest long-term monitoring climate trend sink potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, H.D., MacAlady, A.K., Breshears, D.D., Allen, C.D., Stephenson, N.L., Saleska, S.R., Huxman, T.E., and McDowell, N.G., Climate-induced tree mortality: Earth system consequences, EOS, 2010, vol. 91, pp. 153–154.CrossRefGoogle Scholar
  2. Assessment Report on Climate Change and its Consequences in the Russian Federation (General Summary), Moscow: Rosgidromet, 2008.Google Scholar
  3. Bazilevich, N.I., Biologicheskaya produktivnost’ ekosistem Severnoi Evrazii (Biological Productivity of Ecosystems of Northern Eurasia), Moscow: Nauka, 1993.Google Scholar
  4. Bazilevich, N.I. and Titlyanova, A.A., Bioticheskii krugovorot na pyati kontinentakh: azot i zol’nye elementy v prirodnykh nazemnykh ekosistemakh (Biotic Cycle on the Five Continents: Nitrogen and Ash Elements in Natural Terrestrial Ecosystems), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2008.Google Scholar
  5. Bigler, C., Gavin, D.G., Gunning, C., and Veblen, T.T., Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains, Oikos, 2007, vol. 116, pp. 1983–1994.CrossRefGoogle Scholar
  6. Borken, W., Savage, K., Davidson, E., and Trumbore, S., Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil, Global Change Biol., 2006, vol. 12, pp. 177–193.CrossRefGoogle Scholar
  7. Bréda, N., Huc, R., Granier, A., and Dreyer, E., Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. For. Sci., 2006, vol. 63, pp. 625–644.Google Scholar
  8. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., et al., Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 2005, vol. 437, no. 7058, pp. 529–533.CrossRefPubMedGoogle Scholar
  9. Dorman, J.L. and Sellers, P.J., A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB), J. Appl. Meteorol., 1989, vol. 28, pp. 833–855.Google Scholar
  10. Fang, J., Chen, A., Peng, C., and Zhao, S.L., Changes in forest biomass carbon storage in China between 1949 and 1998, Science, 2001, vol. 292, no. 5525, pp. 2320–2322.CrossRefPubMedGoogle Scholar
  11. Field, C.B., Randerson, J.T., and Malmstrom, C.M., Global net primary production: combining ecology and remote sensing, Remote Sens. Environ., 1995, vol. 51, pp. 74–88.CrossRefGoogle Scholar
  12. Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., and Schepaschenko, D.G., Boreal forest health and global change, Science, 2015, vol. 349, no. 6250, pp. 819–822.CrossRefPubMedGoogle Scholar
  13. Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C., and Wofsy, S.C., Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability, Science, 1996, vol. 271, pp. 1576–1578.CrossRefGoogle Scholar
  14. Gulev, S.K., Kattsov, V.M., and Solomina, O.N., Global warming is continuing, Herald Russ. Acad. Sci., 2008, vol. 78, no. 1, pp. 44–50.CrossRefGoogle Scholar
  15. Harmon, M.E. and Sexton, J., Guidelines for Measurements of Woody Debris in Forest Ecosystems, Seattle, WA: Univ. of Washington, 1996, no. 20.Google Scholar
  16. Jomura, M., Kominami, Y., Tamai, K., Miyama, T., Goto, Y., Dannoura, M., and Kanazawa, Y., The carbon budget of coarse woody debris in a temperate broad-leaved secondary forest in Japan, Tellus B, 2007, vol. 59, pp. 211–222.CrossRefGoogle Scholar
  17. Kapitsa, E.A., Shorohova, E.V., and Kuznetsov, A.A., The carbon pool of large wood residues in the native forests of the northwest of the Russian Plain, Lesovedenie, 2012, no. 5, pp. 36–43.Google Scholar
  18. Kudeyarov, V.N. and Kurganova, I.N., Respiration of Russian soils: database analysis, long-term monitoring, and general estimates, Eurasian Soil Sci., 2005, vol. 38, no. 9, pp. 983–992.Google Scholar
  19. Kudeyarov, V.N., Zavarzin, G.A., Blagodatskii, S.A., Borisov, A.V., Voronin, P.Yu., Demkin, V.A., Demkina, T.S., Yevdokimov, I.V., Zamolodchikov, D.G., Karelin, D.V., Komarov, A.S., Kurganova, I.N., Larionov, A.A., Lopes de Gerenyu, V.O., Utkin, A.I., and Chertov, O.G., Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Carbon Reserves and Flows in Terrestrial Ecosystems in Russia), Moscow: Nauka, 2007.Google Scholar
  20. Kurganova, I.N., Lopes de Gerenyu, V.O., Rozanova, L.N., Sapronov, D.V., Myakshina, T.N., and Kudeyarov, V.N., Annual and seasonal CO2 fluxes from Russian southern taiga soils, Tellus B, 2003, vol. 55, pp. 338–344.CrossRefGoogle Scholar
  21. Kurganova, I.N., Rozanova, L.N., Myakshina, T.N., and Kudeyarov, V.N., Monitoring of CO2 emission from soils of different ecosystems in southern part of Moscow region: data base analyses of long-term field observations, Eurasian Soil Sci., 2004, vol. 37, no. 13, pp. 74–78.Google Scholar
  22. Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N., Sapronov, D.V., and Kudeyarov, V.N., CO2 emission from soils of various ecosystems of the Southern Taiga Zone: Data analysis of continuous 12-year monitoring, Dokl. Biol. Sci., 2011a, vol. 436, no. 1, pp. 56–58.CrossRefPubMedGoogle Scholar
  23. Kurganova, I.N., Lopes de Gerenyu, V.O., Petrov, A.S., Myakshina, T.N., Sapronov, D.V., Ableeva, V.A., and Kudeyarov, V.N., Effect of the observed climate changes and extreme weather phenomena on the emission component of the carbon cycle in different ecosystems of the southern taiga zone, Dokl. Biol Sci., 2011b, vol. 441, no. 1, pp. 412–416.CrossRefPubMedGoogle Scholar
  24. Kurbatova, J., Tatarinov, F., Molchanov, A., Varlagin, A., Avilov, V., Kozlov, D., Ivanov, D., and Valentini, R., Partitioning of ecosystem respiration in a paludified shallow-peat spruce forest in the southern taiga of European Russia, Environ. Res. Lett., 2013, vol. 8, no. 4. doi 10.1088/1748-9326/8/4/045028Google Scholar
  25. Larionova, A.A., Rozanova, L.N., Yevdokimov, I.V., Kurganova, I.N., Sapronov, D.V., and Lopes de Gerenyu, V.O., Root respiration and its contribution to CO2 emission from soils, Eurasian Soil Sci., 2003, no. 2, pp. 173–184.Google Scholar
  26. Larionova, A.A., Kurganova, I.N., Lopes de Gerenyu, V.O., Zolotareva, B.N., Yevdokimov, I.V., and Kudeyarov, V.N., Carbon dioxide emissions from agrogray soils under climate changes, Eurasian Soil Sci., 2010, vol. 43, no. 2, pp. 168–176.CrossRefGoogle Scholar
  27. Le Quéré, C., Andres, R.J., Boden, T., Conway, T., Houghton, R.A., House, J.I., Marland, G., Peters, G.P., van der Werf, G.R., Ahlström, A., Andrew, R.M., Bopp, L., Canadell, J.G., Ciais, P., Doney, S.C., et al., The global carbon budget 1959–2011, Earth Syst. Sci. Data, 2013, vol. 5, pp. 165–185. doi. http://www.earthsyst-sci-data.net/5/165/2013/. doi 10.5194/essd-5-165-2013CrossRefGoogle Scholar
  28. Le Quéré, C., Peters, G.P., Andres, R.J., Andrew, R.M., Boden, T.A., Ciais, P., Friedlingstein, P., Houghton, R.A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D.C.E., et al., Global carbon budget 2014, Earth Syst. Sci. Data Disc., 2014, vol. 6, pp. 235–263. doi http://www.earthsyst-sci-data-discuss.net/6/1/2014/. doi 10.5194/essdd-6-1-2014CrossRefGoogle Scholar
  29. Lopes de Gerenyu, V.O., Kurganova, I.N., Rozanova, L.N., and Kudeyarov, V.N., Annual emission of carbon dioxide from soils of the Southern Taiga soils of Russia, Eurasian Soil Sci., 2001, vol. 34, no. 9, pp. 931–944.Google Scholar
  30. Lopes de Gerenyu, V.O., Kurganova, I.N., Rozanova, L.N., and Kudeyarov, V.N., Effect of temperature and moisture content on CO2 evolution rate of cultivated phaeozem: analyses of long-term field experiment, Plant, Soil Environ., 2005, vol. 51, no. 5, pp. 213–219.CrossRefGoogle Scholar
  31. Los, S.O., Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: indication for a CO2 fertilization effect in global vegetation, Global Biogeochem. Cycles, 2013, vol. 27, pp. 318–330.CrossRefGoogle Scholar
  32. Mariappan, N., Net primary productivity estimation of Eastern Ghats using multispectral MODIS data, Int. J. Geomat. Geosci., 2010, vol. 1, no. 3, pp. 406–413.Google Scholar
  33. Mukhin, V.A. and Voronin, P.Yu., Mycogenic decomposition of wood and carbon emission in forest ecosystems, Russ. J. Ecol., 2007, vol. 38, no. 1, pp. 22–26.CrossRefGoogle Scholar
  34. Mukhin, V.A., Voronin, P.Yu., Sukhareva, A.V., and Kuznetsov, V.V., Wood decomposition by fungi in the boreal-humid forest zone under the conditions of climate warming, Dokl. Biol. Sci., 2010, vol. 431, no. 1, pp. 110–112.CrossRefGoogle Scholar
  35. Mukhin, V.A., Diyarova, D.K., and Veselkin, D.V., Moisture as a factor of CO2-emission activity of wood debris, Lesovedenie, 2015, no. 3, pp. 208–213.Google Scholar
  36. Peters, G.P., Minx, J.C., Weber, C.L., and Edenhofer, O., Growth in emission transfers via international trade from 1990 to 2008, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 21, pp. 8903–8908.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Potter, C., Klooster, S., Myneni, R., Genovese, V., Tan, P., and Kumar, V., Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998, Global Planet Change, 2003, vol. 39, pp. 201–213.CrossRefGoogle Scholar
  38. Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., and Klooster, S.A., Terrestrial ecosystem production: a process model based on global satellite and surface data, Global Biogeochem. Cycles, 1993, vol. 7, pp. 811–841.CrossRefGoogle Scholar
  39. Reichstein, M., Bahn, M., Ciais P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., et al., Climate extremes and the carbon cycle, Nature, 2013, vol. 500, pp. 287–295.CrossRefPubMedGoogle Scholar
  40. Safonov, S.S., Karelin, D.V., Grabar, V.A., Latyshev, B.A., Grabovskii, V.I., Uvarova, N.E., Zamolodchikov, D.G., Korotkov, V.N., and Gitarskii, M.L., Emission of carbon dioxide from the decomposition of windfalls in the southern taiga, Lesovedenie, 2012, no. 5, pp. 44–49.Google Scholar
  41. Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A., and Appenzeller, C., The role of increasing temperature variability in European summer heatwaves, Nature, 2004, vol. 427, pp. 332–336.CrossRefPubMedGoogle Scholar
  42. Second Assessment Report on Climate Change and its Consequences in the Russian Federation (General Summary), Moscow: Rosgidromet, 2014.Google Scholar
  43. Shorohova, E. and Kapitsa, E., Mineralization and fragmentation rates of bark attached to logs in a northern boreal forest, Forest Ecol. Manage., 2014, vol. 315, pp. 185–190.CrossRefGoogle Scholar
  44. Shorohova, E., Kapitsa, E., and Vanha-Majamaa, I., Decomposition of stumps 10 years after partial and complete harvesting in southern boreal forest in Finland, Can. J. For. Res., 2008, vol. 38, no. 9, pp. 2414–2421.CrossRefGoogle Scholar
  45. Shorohova, E.V., Kapitsa, E.A., and Kuznetsov, A.A., Mycogenic xylolysis of stumps and windfalls in fir taiga, Lesovedenie, 2009, no. 4, pp. 24–33.Google Scholar
  46. Shvidenko, A.Z. and Shepashchenko, D.G., Carbon budget of Russian forests, Sib. Lesn. Zh., 2014, no. 1, pp. 69–92.Google Scholar
  47. Stegehuis, A., Vautard, A., Ciais, P., Teuling, A., Jung, M., and Yiou, P., Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations, Clim. Dyn., 2013, vol. 41, no. 2, pp. 455–477.CrossRefGoogle Scholar
  48. Unger, S., Maguas, C., Pereira, J.S., Davidd, T.S., and Werner, C., The influence of precipitation pulses on soil respiration—assessing the “Birch effect” by stable carbon isotopes, Soil Biol. Biochem., 2010, vol. 42, pp. 1800–1810.CrossRefGoogle Scholar
  49. Voronin, P.Yu., Maksimov, T.Kh., Mukhin, V.A., and Kuznetsov, V.V., Carbon gas exchange in the atmo sphere-boreal forest system of northern Eurasia under climate warming, in Ekstremal’nye prirodnye yavleniya i katastrofy. Tom 1. Otsenka i puti snizheniya negativnykh posledstvii ekstremal’nykh prirodnykh yavlenii (Extreme Natural Events and Disasters, Vol. 1: Evaluation and Reduction of Negative Impacts of Extreme Natural Events), Moscow: Inst. Fiz. Zemli, 2010, pp. 385–397.Google Scholar
  50. Vygodskaya, N.N., Varlagin, A.V., Kurbatova, Yu.A., Olchev, A.V., Panferov, O.I., Tatarinov, F.A., and Shalukhina, N.V., Response of taiga ecosystems to extreme weather conditions and climate anomalies, Dokl. Biol. Sci., 2009, vol. 429, no. 6, pp. 571–574.CrossRefPubMedGoogle Scholar
  51. Zamolodchikov, D.G., Evaluation of carbon pool of large wood remains in Russian forests taking into account the impact of wild fires and logging, Lesovedenie, 2009, no. 4, pp. 3–15.Google Scholar
  52. Zamolodchikov, D.G., Korovin, G.N., and Gitarskii, M.L., Carbon budget of controlled forests of the Russian Federation, Lesovedenie, 2007, no. 6, pp. 23–34.Google Scholar
  53. Zamolodchikov, D.G., Grabovskii, V.I., and Kraev, G.N., A twenty-year retrospective on the forest carbon dynamics in Russia, Contemp. Probl. Ecol., 2011, vol. 4, no. 7, pp. 706–715.CrossRefGoogle Scholar
  54. Zhang, L., Wylie, B.K., Ji, L., Gilmanov, T.G., Tieszen, L.L., and Howard, D.M., Upscaling carbon fluxes over the Great Plains grasslands: sinks and sources, J. Geophys. Res., 2011, vol. 116, p. G00J03. doi 10.1029/2010JG001504CrossRefGoogle Scholar
  55. Zhang, Y., Xu, M., Chen, H., and Adams, J., Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate, Global Ecol. Biogeogr., 2009, vol. 18, pp. 280–290.CrossRefGoogle Scholar
  56. Zhao, M. and Running, S.W., Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science, 2010, vol. 329, pp. 940–943.CrossRefPubMedGoogle Scholar
  57. Zolotokrylin, A.N., Vinogradova, V.V., and Cherenkova, E.A., Drougth dynamics in European Russia under global warming, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Ecological Monitoring and Modeling of Ecosystems), St. Petersburg: Gidrometeoizdat, 2007, vol. 21, pp. 160–182.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. N. Kurganova
    • 1
    • 2
    Email author
  • V. O. Lopes de Gerenyu
    • 1
  • T. N. Myakshina
    • 1
  • D. V. Sapronov
    • 1
  • I. Yu. Savin
    • 3
    • 4
  • E. V. Shorohova
    • 2
  1. 1.Institute of Physicochemical and Biological Problems of Soil SciencesRussian Academy of SciencesPushchinoRussia
  2. 2.Forest Research Institute, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia
  3. 3.Dokuchaev Soil Science InstituteMoscowRussia
  4. 4.Agrarian Technological InstitutePeoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations