Advertisement

Contemporary Problems of Ecology

, Volume 10, Issue 7, pp 738–747 | Cite as

Classification and Mapping of Coenotic Diversity of Forests

  • T. V. Chernen’kova
  • O. V. Morozova
Article
  • 9 Downloads

Abstract

The proposed approach to the study of regularities of spatial variability of plant cover and to mapping forest vegetation is illustrated by the example of European Russia. It is shown that remote sensing and GIS technologies require particular standards of plant cover classification and reflection in maps. The given principles of classification and compilation of explications for maps of forest cover enable an assessment of its status and dynamics and a comparison of materials of different scales. We use the ecological–phytocoenotic approach to classifying forest vegetation. The specified units correspond to the categories of the main classifications of plant cover used in Russian geobotanics. In our classification, we have verified some parameters and the semantics of the mapped units, using satellite images, for their definite identification and interpretation. The elaborated approach to the classification and mapping of forest cover is applied for the study of the diversity of spruce forests under different climatic conditions in two regions, where they occupy about 20% of the total area. The first example characterizes the northern taiga subzone of forests of eastern Fennoscandia in the center of Murmansk oblast, and the second one represents the subzone of broad-leaved–coniferous forest in the southwest of Moscow oblast.

Keywords

Forest cover classification coenotic diversity mapping field and remote data Murmansk oblast Moscow oblast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, R.G., Ecoregions of the Continents, Washington, DC: U.S. Dep. Agric., For. Service, 1995.Google Scholar
  2. Bailey, R.G., Identifying ecoregion boundaries, Environ. Manage., 2005, vol. 34, no. 1, pp. 14–26.Google Scholar
  3. Bartalev, S.A., Ershov, D.V., Isaev, A.S., and Lupyan, E.A., Satellite cartography of forest ecosystems of Northern Eurasia, in Raznoobrazie i monitoring lesnykh ekosistem Rossii (Diversity and Monitoring of Forest Ecosystems of Russia), Isaev, A.S., Ed., Moscow: KMK, 2012, book 1, pp. 261–286.Google Scholar
  4. Bazilevich, N.I., Grebenshchikov, O.S., and Tishkov, A.A., Geograficheskie zakonomernosti struktury i funktsioniraniya ekosistem (Geographical Pattern of Structure and Functions of Ecosystems), Moscow: Nauka, 1986.Google Scholar
  5. Blasi, C. and Michetti, L., Biodiversity and climate, in Biodiversity in Italy. Contribution to the National. Biodiversity Strategy, Blasi, C., Boitani, L., La Posta, S., Manes, F., and Marchetti, M., Eds., Rome: Palombi, 2005, pp. 57–66.Google Scholar
  6. Blasi, C., Capotorti, G., Frondoni, R., Guida, D., Mollo, B., Smiraglia, D., and Zavattero, L., Vegetation science and the ecoregional approach: a proposal for the ecological land classification of Italy, Fitosociologia, 2011, vol. 48, no. 2, pp. 75–82.Google Scholar
  7. Chernenkova, T.V., Puzachenko, M.Yu., Morozova, O.V., Ogureeva, G.N., and Kuperman, R.G., An approach for mapping Northern Fennoscandian forests at different scales, Bot. Pac., 2015a, vol. 4, no. 1, pp. 37–46.Google Scholar
  8. Chernen’kova, T.V., Puzachenko, M.Yu., Basova, E.V., and Koroleva, N.E., Cenotic diversity and cartography of vegetation cover in the central part of Murmansk oblast, in Geobotanicheskoe kartografirovanie (Geobotanical Cartography), St. Petersburg: Bot. Inst. im. V.L. Komarova, 2015b, pp. 78–94.Google Scholar
  9. Chernen’kova, T.V., Morozova, O.V., Puzachenko, M.Yu., Popov, S.Yu., and Belyaeva, N.G., Composition and structure of spruce forests of the southwestern part of Moscow region, Contemp. Probl. Ecol., 2016, vol. 9, no. 7, pp. 820–833.CrossRefGoogle Scholar
  10. Davies, C.E., Hill, M.O., and Moss, D., EUNIS Habitat Classification, Revised 2004, Dorchester: Centre Ecol. Hydrol., Winfrith Technol. Centre, 2004.Google Scholar
  11. Diekmann, M., Deciduous forest vegetation in Boreonemoral Scandinavia, Acta Phtogeogr. Suecica, 1994, vol. 4, pp. 1–116.Google Scholar
  12. ECOMAP, Delineation, Peer Review, and Refinement of Subregions of the Conterminous United States, Gen. Tech. Report WO-76A, Washington, DC: U.S. Dep. Agric., For. Service, 2007.Google Scholar
  13. EEA, Digital map of European ecological regions, 2000. http://www.eea.europa.eu/data-and-maps/data/digitalmap-of-european-ecological-regions. Accessed January 27, 2017.Google Scholar
  14. Emel’yanova, L.G. and Ogureeva, G.N., Biogeograficheskoe kartografirovanie: uchebnoe posobie (Biogeographic Cartography: Manual), Moscow: Mosk. Gos. Univ., 2006.Google Scholar
  15. Ermakov, N.B., Raznoobrazie boreal’noi rastitel’nosti Severnoi Azii. Gemiboreal’nye lesa. Klassifikatsiya i ordinatsiya (Diversity of Boreal Vegetation of North Asia. Hemiboreal Forests. Classification and Ordination), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2003.Google Scholar
  16. Feoli, E. and Lausi, D., The logical basis of syntaxonomy in vegetation science, in Syntaxonomie, Dierschke, H., Ed., Vaduz: J. Cramer, 1981, pp. 35–42.Google Scholar
  17. Global Ecological Zoning for the Global Forest Resources Assessment 2000: Final Report, Rome: UN Food Agric. Org., 2001. http://www.fao.org/docrep/006/ad652e/ad652e21.htm#TopOfPage. Accessed 27, 2017.Google Scholar
  18. Greig-Smith, P., The development of numerical classification and ordination, Vegetatio, 1980, vol. 42, no. 1, pp. 1–9.CrossRefGoogle Scholar
  19. Il’inskaya, S.A., Matveeva, M.A., Rechan, S.P., Kazantseva, T.N., and Orlova, M.A., Forest types, in Lesa Zapadnogo Podmoskov’ya (Forests of Western Part of Moscow Region), Moscow: Nauka, 1982, pp. 20–149.Google Scholar
  20. Isachenko, A.G., Landshafty SSSR (Landscapes of Soviet Union), Leningrad: Leningr. Gos. Univ., 1985.Google Scholar
  21. Isachenko, A.G., Ekologicheskaya geografiya Rossii (Ecological Geography of Russia), St. Petersburg: S.-Peterb. Gos. Univ., 2001.Google Scholar
  22. Johansen, B. and Karlsen, S.R., Monitoring vegetation changes on Finnmarksvidda, Northern Norway, using Landsat MSS and Landsat TM/ETM plus satellite images, Phytocoenologia, 2005, vol. 35, no. 4, pp. 969–984.Google Scholar
  23. Johansen, B.E. and Karlsen, S.R., Vegetation mapping of Norway and Northern Scandinavia using satellite data, Proc. Fourth Int. Conservation of Arctic Flora and Fauna (CAFF) Flora Group Workshop, May 15–18, 2007, Torshavn, Faroe Islands, CAFF Tech. Rep. No. 15, Talbot, S.S., Ed., Akureyri, 2008, pp. 89–90.Google Scholar
  24. Johansen, K., Phinn, S., and Taylor, M., Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine, Remote Sens. Appl.: Soc. Environ., 2015, no. 1, pp. 36–49.Google Scholar
  25. Kent, M., Vegetation Description and Data Analysis: A Practical Approach, Chichester: Wiley, 2012, 2nd ed.Google Scholar
  26. Kryshen’, A.M. and Litinskii, P.Yu., Comparison and reciprocal verification of geoinformation and ecologicaldynamic models of diversity of forest ecosystems, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, 2013, no. 2, pp. 86–91.Google Scholar
  27. Land Cover Classification System (LCCS): Classification Concepts and User Manual, Rome: UN Food Agric. Org., 2005. http://www.fao.org/docrep/008/y7220e/y7220e00.htm. Accessed January 27, 2017.Google Scholar
  28. Lavrenko, E.M., The main features of botanical-geographic division of Soviet Union and adjacent countries, in Problemy botaniki (Problems of Botany), Moscow: Akad. Nauk SSSR, 1950, no. 1, pp. 530–548.Google Scholar
  29. Lavrenko, E.M., The plant communities and their classification, Bot. Zh., 1982, vol. 67, no. 5, pp. 572–580.Google Scholar
  30. Lavrinenko, I.A., Typology of territorial vegetation units for large-scale mapping (by the example of Kolguev Island), in Geobotanicheskoe kartografirovanie (Geobotanical Cartography), St. Petersburg: Bot. Inst. im. V.L. Komarova, 2015, pp. 95–119.Google Scholar
  31. Lawley, V., Lewis, M., Clarke, K., and Ostendorf, B., Site-based and remote sensing methods for monitoring indicators of vegetation condition: an Australian review, Ecol. Indic., 2015. http://dx.doi.org/. Accessed January 27, 2017. doi 10.1016/j.ecolind. 2015.03.021Google Scholar
  32. McBratney, A.B., Mendonca-Santos, M.L., and Minasny, B., On digital soil mapping, Geoderma, 2003, vol. 117, nos. 1–2, pp. 3–52.CrossRefGoogle Scholar
  33. McRober, R.E., A model-based approach to estimating forest area, Remote Sens. Environ., 2006, no. 103, pp. 56–66.CrossRefGoogle Scholar
  34. Mücher, C.A., Klijn, J.A., Wascher, D.M., and Schaminee, J.H.J., A new European Landscape Classification (LANMAP): A transparent, flexible and useroriented methodology to distinguish landscapes, Ecol. Indic., 2010, vol. 10, pp. 87–103.Google Scholar
  35. Mucina, L., Classification of vegetation: past, present and future, J. Veg. Sci., 1997, vol. 8, pp. 751–760.CrossRefGoogle Scholar
  36. Nakamura, Y., Krestov, P.V., and Omelko, A.M., Bioclimate and zonal vegetation in Northeast Asia: first approximation to an integrated study, Phytocoenologia, 2007, vol. 37, nos. 3–4, pp. 443–470.CrossRefGoogle Scholar
  37. National Forest Inventories: Pathways for Common Reporting, Tomppo, E., Gschwanter, T., Lawrence, G., and McRoberts, R.E., Eds., Heidelberg: Springer-Verlag, 2010.Google Scholar
  38. Nauchno-prikladnoi spravochnik po klimatu SSSR (Scientific-Applied Handbook on Climate of Soviet Union), St. Petersburg: Gidrometeoizdat, 1990.Google Scholar
  39. Nazimova, D.I., Sector-zonal patterns of the structure of the forest cover (by the example of the mountains of Southern Siberia and boreal Eurasia), Extended Abstract of Doctoral (Biol.) Dissertation, Krasnoyarsk, 1998.Google Scholar
  40. Nazimova, D.I. and Polikarpov, N.P., Forest zones of Siberia as determined by climatic zones and their possible transformation trends under global change, Silva Fenn., 1996, vol. 30, nos. 2–3, pp. 201–208.Google Scholar
  41. Nazimova, D.I., Ermakov, N.B., Andreeva, N.M., and Stepanov, N.V., Conceptual model of structural biodiversity of zonal classes of forest ecosystems of Northern Eurasia, Sib. Ekol. Zh., 2004, no. 5, pp. 745–755.Google Scholar
  42. Neshataev, V.Yu., Draft All-Russian Code of Phytocenological Nomenclature, Rastit. Ross., 2001, no. 1, pp. 62–70.Google Scholar
  43. Ogureeva, G.N., The identification of forest biodiversity, in Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody (Monitoring of Biological Diversity of Russian Forests: Methods), Isaev, A.S., Ed., Moscow: Nauka, 2008, pp. 97–110.Google Scholar
  44. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E., D’Amico, J., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., et al., Terrestrial ecoregions of the world: a new map of life on Earth, BioScience, 2001, vol. 51, no. 11, pp. 933–938.CrossRefGoogle Scholar
  45. Pinto-Correia, T., Cancela d’Abreu, A., and Oliveira, R., Landscape units in Portugal and the development and application of landscape indicators, in Proc. NIJOS/OECD Expert Meeting on Agricultural Landscape Indicators “Developing Indicators for Policy Analysis,” Dramstad, W. and Sogge, C., Eds., Oslo, 2003.Google Scholar
  46. Porfir’ev, V.S., Use of definitions of series and cycle for analysis of coniferous–broad-leaved forests, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1960, vol. 65, no. 3, pp. 93–102.Google Scholar
  47. Puzachenko, M.Yu. and Puzachenko, Yu.G., The multifunctional analysis of vegetation, Proc. Int. Conf. “Man and Environment in Boreal Forest Zone: Past, Present, and Future,” Central Forest State Natural Biosphere Reserve, Russia, July 24–29, 2008, Novenko, E.Yu., Spasskaya, I.I., and Olchev, A.V., Eds., M.: Inst. Geogr., Russ. Acad. Sci., 2008, pp. 83–85.Google Scholar
  48. Puzachenko, Yu.G. and Skulkin, V.S., Struktura rastitel’nosti lesnoi zon SSSR (The Vegetation Structure of Forest Zone of Soviet Union), Moscow: Nauka, 1981.Google Scholar
  49. Puzachenko, M.Yu., Chernen’kova, T.V., and Basova, E.V., Analysis of natural-anthropogenic heterogeneity of vegetation cover of the central part of Murmansk oblast, in Raznoobrazie i monitoring lesnykh ekosistem Rossii (Diversity and Monitoring of Forest Ecosystems of Russia), Moscow: KMK, 2012, pp. 371–382.Google Scholar
  50. Reese, H., Nilsso, M., Sandstro, P., and Olsso, H., Applications using estimates of forest parameters derived from satellite and forest inventory data, Comput. Electron. Agric., 2002, vol. 37, pp. 37–56.CrossRefGoogle Scholar
  51. Rivas-Martinez, S., Notions on dynamic-catenal phytosociology as a basis of landscape science, Plant Biosyst., 2005, vol. 139, no. 2, pp. 135–144.CrossRefGoogle Scholar
  52. Ruefenacht, B., Finco, M.V., Nelson, M.D., Czaplewski, R., Helmer, E.H., Blackard, J.A., Holden, G.R., Lister, A.J., Salajanu, D., Weyermann, D., and Winterberger, K., Conterminous U.S. and Alaska forest type mapping using forest inventory and analysis data, Photogramm. Eng. Remote Sens., 2008, vol. 74, no. 11, pp. 1379–1388.CrossRefGoogle Scholar
  53. Rysin, L.P. and Savel’eva, L.I., Elovye lesa Rossii (Spruce Forests of Russia), Moscow: Nauka, 2002.Google Scholar
  54. Rysin, L.P. and Savel’eva, L.I., Kadastry tipov lesa i tipov lesnykh biogeotsenozov (Inventories of the Types of Forests and Forest Biogeocenosises), Moscow: KMK, 2007.Google Scholar
  55. Saburov, D.N., Lesa Pinegi (Pinega Forests), Leningrad: Nauka, 1972.Google Scholar
  56. Safronov, A.P., Geobotanical cartography of vegetation cover of depressions of northeastern Cis-Baikal region, in Geobotanicheskoe kartografirovanie (Geobotanical Cartography), St. Petersburg: Bot. Inst. im. V.L. Komarova, 2015, pp. 62–77.Google Scholar
  57. Saucier, J.-P., Baldwin, K., Meades, W.B., Meidinger, D., Mackenzie, W., Robitaille, A., and Uligh, P., The CBVM legend and its application for mapping the boreal vegetation of Canada, Int. Symp. “The East Asian Flora and Its Role in the Formation of the World’s Vegetation,” September 23–27, 2012, Vladivostok, 2012, p. 74.Google Scholar
  58. Serebryakov, I.G., Life forms of higher plants and their study, in Polevaya geobotanika (Field Geobotany), Moscow: Nauka, 1964, vol. 3, pp. 146–205.Google Scholar
  59. Smirnov, V.E., Khanina, L.G., and Bobrovskii, M.V., Description of the system of ecological-coenotic groups of the plant species of forest zone of European Russia based on ecological scales, geobotanical descriptions, and statistical analysis, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2006, vol. 111, no. 2, pp. 36–47.Google Scholar
  60. Sochava, V.B., Classification of vegetation as a hierarchy of dynamics systems, in Geobotanicheskoe kartografirovanie (Geobotanical Cartography), Leningrad: Nauka, 1972, pp. 3–18.Google Scholar
  61. Sokolov, S.Ya., Taxonomy of forest associations, in Problemy botaniki (Problems in Botany), Moscow: Akad. Nauk SSSR, 1962, pp. 110–123.Google Scholar
  62. Sukachev, V.N., The general definitions from the theory about vegetation cover, in Rastitel’nost’ SSSR (Vegetation of Soviet Union), Moscow: Akad. Nauk SSSR, 1938, vol. 1, pp. 15–37.Google Scholar
  63. Tchebakova, N.M., Monserud, R.A., and Nazimova, D.I., A Siberian vegetation model based on climatic parameters, Can. J. For. Res., 1994, vol. 24, pp. 1597–1607.CrossRefGoogle Scholar
  64. Tishkov, A.A., modern biogeography as the methodological basis for conservation of biological diversity, in Voprosy geografii. Vyp. 134. Aktual’naya biogeografiya (Problems of Geography, No. 134: Modern Biogeography), Moscow: Kodeks, 2012, pp. 15–57.Google Scholar
  65. Tomppo, E., Olsson, H., Stahl, G., Nilsson, M., Hagner, O., and Katila, M., Combining national forest inventory field plots and remote sensing data for forest databases, Remote Sens. Environ., 2008, vol. 112, no. 5, pp. 1982–1999.CrossRefGoogle Scholar
  66. Tuhkanen, S., A circumboreal system of climatic-phytogeographical regions, Acta Bot. Fenn., 1984, vol. 127, pp. 1–50.Google Scholar
  67. van Eetvelde, V. and Antrop, M., Landscape character beyond landscape typologies. Methodological issues in trans-regional integration in Belgium, Proc. 18th Int. Annual Conf. of European Council of Landscape Architecture Schools (ECLAS) “Landscape Assessment–From Theory to Practice: Applications in Planning and Design,” Belgrade: Planeta Print Beograd, 2007, pp. 229–239.Google Scholar
  68. Vegetation Classification Standard, FGDC-STD-005, Version 2, Washington, DC: Fed. Geogr. Data Com., 2008. https://www.fgdc.gov/standards/projects/vegetation/ NVCS_V2_FINAL_2008-02.pdf. Accessed January 27, 2017.Google Scholar
  69. Vinogradov, B.V., Osnovy landshaftnoi ekologii (Principles of Landscape Ecology), Moscow: GEOS, 1998.Google Scholar
  70. Walter, H. and Breckle, S.-W., Okologishe Grundlagen in Global Sicht, Stuttgart: G. Fischer, 1991.Google Scholar
  71. Weber, H.E., Moravec, J., and Theurillat, J.-P., International Code of phytosociological nomenclature, 3rd ed., Rastit. Ross., 2005, no. 7, pp. 3–38.Google Scholar
  72. Zaugol’nova, L. and Morozova, O.V., typology and classification of forests of European Russia: methods and their implementation, Lesovedenie, 2006, no. 1, pp. 1–15.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Center for Problems of Ecology and Productivity of ForestsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations