Contemporary Problems of Ecology

, Volume 8, Issue 7, pp 811–817 | Cite as

Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products

  • D. G. Schepaschenko
  • A. Z. Shvidenko
  • M. Yu. Lesiv
  • P. V. Ontikov
  • M. V. Shchepashchenko
  • F. Kraxner
Article

Abstract

We review up-to-date, open access remote sensing (RS) products related to forest. We created a hybrid forest/non-forest map using geographically weighted regression (GWR) based on a number of recent RS products and crowdsourcing. The hybrid map has spatial resolution of 230 m and shows the extent of forest in Russia in 2010. We estimate area of Russian forest as 711 million ha (in accordance with Russian national forest definition). Compared to official data of the State Forest Register (SFR), RS estimates the area of forest to be considerably larger in European part (+12.2 million ha or +8%) and smaller in Asian (–39.8 million ha or–7%) part of Russia. We report the changing forest area in 2001–2010 and discuss main drivers: wildfire and encroachment of abandoned arable land. The methodology used here can by applied for monitoring of forest cover and enhancing the forest accounting system in Russia.

Keywords

Russian forest remote sensing crowdsourcing forest cover geographically weighted regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerokosmicheskii monitoring katastroficheskikh pozharov v lesakh Vostochnoi Sibiri (Aerospace Monitoring of Disaster Wildfires in Forests of Eastern Siberia), Sukhinin, A.I., Ed., Krasnoyarsk: Inst. Lesa, Sib. Otd., Ross. Akad. Nauk, 2009.Google Scholar
  2. 2.
    Bartalev, S.A., Development of methods for assessment of status and dynamics of forests based on satellite monitoring, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow: Inst. Kosm. Issled., Ross. Akad. Nauk, 2007.Google Scholar
  3. 3.
    Bartalev, S.A., Belward, A.S., Erchov, D.V., and Isaev, A.S., A new SPOT4-VEGETATION derived land cover map of Northern Eurasia, Int. J. Remote Sens., 2003, vol. 24, no. 9, pp. 1977–1982. doi: 10.1080/0143116031000066297Google Scholar
  4. 4.
    Bartalev, S.A., Stytsenko, F.V., Egorov, V.A., and Lupyan, E.A., Satellite based assessment of post fire mortality of Russian forests, Lesovedenie., 2015, no. 2, pp. 83–94.Google Scholar
  5. 5.
    Brunsdon, C., Fotheringham, S., and Charlton, M., Geographically weighted regression-modeling spatial non-stationarity, J. R. Stat. Soc., D., 1998, vol. 47, no. 3, pp. 431–443. doi: 10.2307/2988625Google Scholar
  6. 6.
    Defourny, P., Vancustem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., and Leroy, M., GLOBCOVER: a 300 m global land cover product for 2005 using ENVISAT MERIS time series, in Proc. VII Mid-Term Symp. the ISPRS Commission “Remote Sensing: from Pixels to Processes,” Enscede, Netherlands, 2006. http://metalib-alibuclacuk/V?func= find-ej-1Google Scholar
  7. 7.
    DiMiceli, C.M., Carroll, M.L., Sohlberg, R.A., Huang, C., Hansen, M.C., and Townshend, J.R.G., Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 m Spatial Resolution for Data Years Beginning Day 65, 2000–2010, Collection 5 Percent Tree Cover, Univ. of Maryland., 2011. http://glcfumdedu/data/vcf/Google Scholar
  8. 8.
    Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X., MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets, Remote Sens. Environ., 2010, vol. 114, no. 1, pp. 168–182. doi: 10.1016/jrse.2009.08.016CrossRefGoogle Scholar
  9. 9.
    Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, M., Kraxner, F., and Obersteiner, M., Geo-Wiki: an online platform for improving global land cover, Environ. Model. Software., 2012, vol. 31, pp. 110–123. doi: 10.1016/jenvsoft. 2011.11.015CrossRefGoogle Scholar
  10. 10.
    Jun, C., Ban, Y., and Li, S., China: open access to Earth land-cover map, Nature., 2014, vol. 514, no. 434. doi: 10.1038/514434cGoogle Scholar
  11. 11.
    Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., and Townshend, J.R.G., High-resolution global maps of 21st-century forest cover change, Science., 2013, vol. 342 (6160), pp. 850–853. doi: 10.1126/science.1244693CrossRefPubMedGoogle Scholar
  12. 12.
    Krylov, A., McCarty, J.L., Potapov, P., Loboda, T., Tyukavina, A., Turubanova, S., and Hansen, M.C., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environ. Res. Lett., 2014, vol. 9, no. 10, pp. 1–8. doi: 10.1088/1748-9326/9/10/1005007CrossRefGoogle Scholar
  13. 13.
    Latham, J., Cumani, R., Rosati, I., and Bloise, M., Global Land Cover SHARE (GLC-SHARE) Database, Beta-Release Version 1.0, 2014, Rome: Food Agric. Org., 2014. http://wwwglcnorg/downs/prj/glcshare/GLC_SHARE_beta_v1.0_2014pdfGoogle Scholar
  14. 14.
    Laverov, N.P. and Lupyan, E.A., Report presented at the Conference dedicated to the anniversary of Academician R.Z. Sagdeev, Moscow: Akad. Minist. Chrezvychainykh Situats., 2013. http://wwwforestforumru/viewtopicphp?f=9&t=14001Google Scholar
  15. 15.
    Osnovnye pokazateli sel’skogo khozyaistva v Rossii. Byulleten’ (Key Indicators of Agriculture in Russia: Bulletin), Moscow: Rosstat, 2012. http://wwwgksru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/publications/catalog/doc_1140096652250Google Scholar
  16. 16.
    Prognoz ispol’zovaniya i vosproizvodstva lesnykh resursov po ekonomicheskim raionam SSSR do 2010 (Forecast of Use and Reproduction of Forest Resources in Economic Regions of the Soviet Union until 2010), Isaev, A.S., Ed., Moscow: Akad. Nauk SSSR, 1991, vol. 1.Google Scholar
  17. 17.
    Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J.E.S., Hall, R.J., and Wegmuller, U., Forest growing stock volume of the northern hemisphere: spatially explicit estimates for 2010 derived from Envisat ASAR data, Remote Sens. Environ., 2015, no. 168, pp. 316–334.CrossRefGoogle Scholar
  18. 18.
    See, L., Schepaschenko, D., Lesiv, M., McCallum, I., Fritz, S., Comber, A., Perger, Ch., Schill, Ch., Zhao, Y., Maus, V., Sirajh, M.A., Albrecht, F., Cipriani, A., Vakolyuk, M., Garcia, A., et al., Building a hybrid land cover map with crowdsourcing and geographically weighted regression, ISPRS J. Photogram. Remote Sens., 2015, vol. 103, pp. 48–56. doi: 10.1016/jisprsjprs.2014.06.016CrossRefGoogle Scholar
  19. 19.
    Sexton, J.O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D.-H., Collins, K.M., Channan, S., DiMiceli, C., and Townshend, J.R., Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error, Int. J. Digital Earth., 2013, vol. 6, no. 5, pp. 427–448. doi: 10.1080/17538947.2013.786146CrossRefGoogle Scholar
  20. 20.
    Shimada, M., Isoguchi, O., Motooka, T., Shiraishi, T., Mukaida, A., Okumura, H., Otaki, T., and Itoh, T., Generation of 10 m resolution PALSAR and JERSSAR mosaic and forest/nonforest maps for forest carbon, in Int. IEEE Geoscience and Remote Sensing Symp. (IGARSS)., 2011, pp. 3510–3513. doi: 10.1109/IGARSS.2011.6049978Google Scholar
  21. 21.
    Solontsov, O.N., Targets of the state inventory of forests in Russia, in Mater. II mezhd. konf. “Problemy lesoustroistva i gosudarstvennoi inventarizatsii lesov v Rossii,” Vologda, 8–10 dekabrya 2010 g. (Proc. II Int. Conf. “Problems of Forest Management and State Inventory of Forests in Russia,” Vologda, December 8–10, 2010)., 2010. http://wwwroslesinforg. ru/press/news/35Google Scholar
  22. 22.
    Sukhikh, V.I., Aerokosmicheskie metody v lesnom khozyaistve i landshaftnom stroitel’stve (Aerospace Methods Applied in Forestry and Landscape Construction), Yoshkar-Ola: Mariisk. Gos. Tech. Univ., 2005.Google Scholar
  23. 23.
    Shvidenko, A.Z., Shchepashchenko, D.G., McCallum, I., Lakyda, I.P., Vaganov, E.A., Sukhinin, A.I., and Maksyutov, Sh.Sh., Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1678–1682.CrossRefGoogle Scholar
  24. 24.
    Shvidenko, A.Z. and Schepaschenko, D.G., Climate change and wildfires in Russia, Contemp. Probl. Ecol., 2013, vol. 6, no. 7, pp. 683–692.CrossRefGoogle Scholar
  25. 25.
    Vivchar, A.V., Moiseenko, K.B., and Pankratova, N.V., Estimates of carbon monoxide emissions from wildfires in northern Eurasia for air quality assessment and climate modeling, Izv. Atmos. Ocean. Phys., 2010, vol. 46, no. 3, pp. 281–293.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. G. Schepaschenko
    • 1
    • 2
  • A. Z. Shvidenko
    • 1
    • 3
  • M. Yu. Lesiv
    • 1
    • 4
  • P. V. Ontikov
    • 2
  • M. V. Shchepashchenko
    • 5
  • F. Kraxner
    • 1
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Moscow State Forest UniversityMytischiRussia
  3. 3.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  4. 4.Lviv Polytechnic National UniversityLvivUkraine
  5. 5.Russian Institute of Continuous Education in ForestryPushkinoRussia

Personalised recommendations