Contemporary Problems of Ecology

, Volume 8, Issue 6, pp 680–686 | Cite as

Climate-induced lake dynamics in the Trans-Baikal forest-steppe ecotone

  • S. T. Im
  • V. I. Kharuk
  • N. M. Rakityanskaya
  • A. S. Golyukov


Quantitative dynamics, water surface area, and water level of lakes in the Trans-Baikal forest-steppe zone have been studied by spectroradiometry (Landsat satellite), gravimetry (GRACE satellite), and altimetry (Envisat satellite). The number of lakes and their water surface area correlated with precipitation (r = 0.84–0.85), summer and annual temperature (r =–0.77 to–0.9), and drought index (r = 0.95–0.97). During extremely dry periods (2006–2010), the number of lakes decreased by four (compared to 1989) and their water surface area decreased by three (compared to 2000). The rate of change in the water level of the lakes (periods of ~29 years) was determined.


lake dynamics Trans-Baikal forest-steppe Landsat GRACE altimetry SPEI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazhenova, O.I., Intradecadal structure of the systems of exogenic relief formation in the steppes of Central Asia, Geogr. Prirod. Resur., 2007, no. 3, pp. 116–125.Google Scholar
  2. Birkett, C., Reynolds, C., Beckley, B., and Doorn, B., From research to operations: the USDA global reservoir and lake monitoring, in Coastal Altimetry, Vignudelli, S, Kostianoy, A.G., Cipollini, P., and Benveniste, J., Eds., Berlin: Springer-Verlag, 2011, pp. 19–50. Scholar
  3. Jepsen, S.M., Voss, C.I., Walvoord, M.A., Minsley, B.J., and Rover, J., Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA, Geophys. Res. Lett., 2013, vol. 40, pp. 882–887. doi: 10.1002/grl.50187 CrossRefGoogle Scholar
  4. Harris, I., Jones, P.D., Osborn, T.J., and Lister, D.H., Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 Dataset Issue, Int. J. Climatol., 2014, vol. 34, no. 3, pp. 623–642.CrossRefGoogle Scholar
  5. Huang, L., Liu, J., Shao, Q., and Liu, R., Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau, Clim. Change, 2011, vol. 109, pp. 479–502. doi: 10.1007/s10584-011-0032-x CrossRefGoogle Scholar
  6. Intergovernmental Panel on Climate Change, IPCC Fifth Assessment Synthesis Report. 2014. Scholar
  7. Karlsson, J. M., Lyon, S.W., and Destouni, G., Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia, Remote Sens., 2014, vol. 6, pp. 621–636. doi: 10.3390/rs6010621 CrossRefGoogle Scholar
  8. Kharuk, V.I., Im, S.T., Oskorbin, P.A., Petrov, I.A., and Ranson, K.J., Siberian pine decline and mortality in southern Siberian mountains, For. Ecol. Manage., 2013a, vol. 310, pp. 312–320.CrossRefGoogle Scholar
  9. Kharuk, V.I., Ranson, K.J., Oskorbin, P.A., Im, S.T., and Dvinskaya, M.L., Climate induced birch mortality in trans-Baikal lake region, Siberia, For. Ecol. Manage., 2013b, vol. 289, pp. 385–392.CrossRefGoogle Scholar
  10. Kornutova, E.I., History of development of the Toreiskie Lakes in Eastern Transbaikalia, in Mezozoiskie i kainozoiskie ozera Sibiri (Mesozoic and Cainozoic Lakes of Siberia), Moscow: Nauka, 1968, pp. 74–88.Google Scholar
  11. Kravtsova, V.I. and Tarasenko, T.V., Dynamics of thermokarst lakes of central Yakutia affected by climate changes from 1950, Kriosfera Zemli, 2011, vol. 15, no. 3, pp. 31–42.Google Scholar
  12. Landerer, F.W. and Swenson, S.C., Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 2012, vol. 48, no. 4. doi: 10.1029/2011WR011453
  13. Liao, J., Shena, G., and Li, Y., Lake variations in response to climate change in the Tibetan Plateau in the past 40 years, Int. J. Digital Earth, 2013, vol. 6, no. 6, 534–549. doi: 10.1080/17538947.2012.656290 CrossRefGoogle Scholar
  14. Obyazov, V.A., Relationship between water content of the steppe lakes in Transbaikalia with long-term hydrometeorological changes by example of Toreiskie Lakes, Izv. Russ. Geogr. O-va, 1994, vol. 126, no. 5, pp. 48–54.Google Scholar
  15. Obyazov, V.A. and Smakhtin, V.K., Long-term regime of the run-off of the Transbaikalian rivers, Vodn. Khoz. Ross., 2012, no. 1, pp. 63–72.Google Scholar
  16. Riordan, B., Verbyla, D., and McGuire, A.D., Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images, J. Geophys. Res., 2006, vol. 111, G04002. doi: 10.1029/2005JG000150
  17. Roach, J.K., Griffith, B., and Verbyla, D., Landscape influences on climate-related lake shrinkage at high latitudes, Global Change Biol., 2013, vol. 19, pp. 2276–2284. doi: 10.1111/gcb.12196 CrossRefGoogle Scholar
  18. Rover, J., Ji, L., Wylie, B.K., and Tieszen, L.L., Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data, Remote Sens. Lett., 2012, vol. 3, pp. 595–604. doi: 10.1080/01431161.2011.643507 CrossRefGoogle Scholar
  19. Smith, L.C., Sheng, Y., McDonald, G.M., and Hinzman, L.D., Disappearing Arctic lakes, Science, 2005, vol. 308, p. 1429.PubMedCrossRefGoogle Scholar
  20. Song, C., Huang, B., and Ke, L., Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data, Remote Sens. Environ., 2013, vol. 135, pp. 25–35.CrossRefGoogle Scholar
  21. Tangdamrongsub, N., Hwang, C., and Kao, Y.-C., Water storage loss in central and south Asia from GRACE satellite gravity: correlations with climate data, Nat Hazard., 2011, vol. 59, pp. 749–769. doi: 10.1007/s11069011-9793-9 CrossRefGoogle Scholar
  22. Vicente-Serrano, S.M., Santiago, B., and Juan, I.L.-M., A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index—SPEI, J. Clim., 2010, vol. 23, pp. 1696–1718.CrossRefGoogle Scholar
  23. Yang, X. and Lu, X., Drastic change in China’s lakes and reservoirs over the past decades, Sci. Rep., 2014, vol. 4, p. 6041. doi: 10.1038/srep06041 PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. T. Im
    • 1
    • 2
    • 3
  • V. I. Kharuk
    • 1
    • 2
  • N. M. Rakityanskaya
    • 2
  • A. S. Golyukov
    • 2
  1. 1.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Reshetnev Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations