Contemporary Problems of Ecology

, Volume 8, Issue 4, pp 534–539 | Cite as

Ecological interactions in the system: Entomopathogenic bacterium Bacillus thuringiensis—phytopathogenic fungus Rhizoctonia solani—host plant Solanum tuberosum

  • S. A. Bakhvalov
  • V. P. Tsvetkova
  • T. V. Shpatova
  • M. V. Shternshis
  • S. D. Grishechkina
Article
  • 64 Downloads

Abstract

The mutual functional dependence in the three-component system Bacillus thuringiensis-Rhizoctonia solani–Solanum tuberosum is shown. Suppression of the rhizoctonia potato disease due to the treatment of tubers with entomopathogenic bacteria Bacillus thuringiensis subsp. Darmstadiensis (BtH 10) is demonstrated. In vitro inhibitory activity of BtH 10 towards R. solani exceeded 80%. Field testing is carried out on two potato cultivars of different ripeness groups in 2013–2014. The rhizoctonia disease severity in stems, stolons, and new tubers decreases significantly due to BtH 10 treatment. Together with biological control of R. solani, BtH 10 promoted plant growth, increasing germinating capacity and stem height and number. The polyfunctional activity of the BtH 10 bacteria contributes to the improvement of potato productivity.

Keywords

Bacillus thuringiensis Rhizoctonia solani Solanum tuberosum biological control disease suppression polyfunctional activity plant growth promotion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akram, W., Mahboot, A., and Javed, A., Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt, Eur. J. Microbiol. Immunol., 2013, vol. 3, pp. 275–280.CrossRefGoogle Scholar
  2. Berg, G., Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 11–18.CrossRefPubMedGoogle Scholar
  3. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., and Ongena, M., Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production, Mol. Plant-Microbe Interact., 2014, vol. 27, no. 2, pp. 87–100.CrossRefPubMedGoogle Scholar
  4. Elkahoui, S., Djebalin, N., Karkouch, I., Hadjibrahim, A., Kalai, L., Bachkovel, S., Tabbene, O., and Limam, F., Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum, Appl. Biochem. Microbiol., 2014, vol. 50, no. 2, pp. 161–165.CrossRefGoogle Scholar
  5. Frank, J.A., Leach, S.S., and Webb, R.A., Evaluation of potato clone reaction to Rhizoctonia solani, Plant Dis. Rep., 1976, vol. 60, no. 11, pp. 910–912.Google Scholar
  6. Grishechkina, S.D., Ermolaeva, V.P., Romanova, T.A., and Tikhonovich, I.A., Patent RF 2514023, 2014.Google Scholar
  7. Grishechkina, S.D. and Smirnov, O.V., Small plot and field estimation of the antifungal activity of Bacillus thuringiensis, Vestn. Zashch. Rast., 2010, no. 3, pp. 44–50.Google Scholar
  8. Hathout, Y., Ho, Y., Rhyzhov, V., Demirev, P., and Fenselav, C., Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis, J. Nat. Prod., 2000, vol. 63, pp. 1492–1496.CrossRefPubMedGoogle Scholar
  9. Heydari, A. and Pessarakli, M., A review on biological control of fungal plant pathogens using microbial antagonists, J. Biol. Sci., 2010, vol. 1, no. 4, pp. 273–290.Google Scholar
  10. Kamenek, L.K., Satarova, T.A., Kamenek, D.V., and Terpilovskii, M.A., Antifungal effect of Bacillus thuringiensis endotoxin in relation to the late blight disease of potato in the field conditions and storage, S-kh. Biol., 2011, no. 1, pp. 112–117.Google Scholar
  11. Kim, P.I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., and Chi, Y.-T., Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26, J. Appl. Microbiol., 2004, vol. 97, pp. 942–949.CrossRefPubMedGoogle Scholar
  12. Knaak, N., Rohr, A., and Fiuza, L., In vitro effect of Bacillus thuringiensis strains and Cry-proteins in phytopathogenic fungi of paddy rice field, Brazil. J. Microbiol., 2007, vol. 38, no. 3.Google Scholar
  13. Kuzin, A.I., Kuznetsova, N.I., Grogorieva, T.M., Zubzsheva, M.V., Nikolaenko, M.A., and Azizbekyan, R.R., A Bacillus thuringiensis strain T-281 with binary pesticidal activity, Biotechnol. Russ., 2008, no. 4, pp. 39–48.Google Scholar
  14. Malyuga, A.A., Enina, N.N., and Shcheglova, O.V., Efficiency of binoram biopreparation in potato cultivation, Biol. Nauki Kazakh., 2005, nos. 3–4, pp. 127–132.Google Scholar
  15. Martinez-Absalon, S., Rojas-Solis, D., Hernandez-Leon, R., Prieto-Barajas, C., Orozco-Mosqueda, M., Peria-Cabriales, J., Sakuda, S., Valencia-Cantero, E., and Santoyo, G., Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea, Biocontrol Sci. Technol., 2014, vol. 24, no. 12, pp. 1349–1362.CrossRefGoogle Scholar
  16. Mojica-Marin, V., Luna-Olvera, H., Sandoval-Coronado, C., Pereyra-Abferer, B., Moreles-Ramos, L., Hernandez-Luna, C., and Alvardo-Gomez, O., Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper, Afr. J. Biotechnol., 2008, vol. 7, no. 9, pp. 1271–1276.Google Scholar
  17. Novikova, I.I., Polyfunctional biopreparations for plant protection against diseases, Zashch. Karantin Rast., 2005, no. 2, pp. 22–26.Google Scholar
  18. Novikova, I.I., Litvinenko, A.I., Boikova, I.V., Yaroshenko, V.A., and Kal’ko, G.V., Biological activity of new microbiological preparations B and S alirins designed for the plant protection against pathogens in different natural climatic zones. I. Biological activity of alirins against diseases of vegetable crops in the fields and greenhouses and potato, Mikol. Fitopatol., 2003, vol. 37, no. 1, pp. 92–98.Google Scholar
  19. Pane, C., Villecco, D., Campanile, F., and Zaccardelli, M., Novel strains of Bacillus isolated from compost and compost-amended soils as biological control agents against soil-borne phytopathogenic fungi, Biol. Sci. Technol., 2012, vol. 22, no. 12, pp. 1373–1388.CrossRefGoogle Scholar
  20. Reyes-Ramirez, A., Escudero-Abarca, B.I., Aguilar-Uscanga, G., Hayward-Jones, P.M., and Barboza-Corona, J.E., Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds, J. Food Sci., 2004, vol. 69, no. 5, pp. M131–M134.Google Scholar
  21. Seo, D.J., Nguen, D.M., Song, Y.S., and Jung, W.J., Induction of defense response against Rhizoctonia solani in cucumber plant by endophytic bacterium Bacillus thuringiensis GS1, J. Microbiol. Biotechnol., 2012, vol. 22, no. 3, pp. 407–415.CrossRefPubMedGoogle Scholar
  22. Shaldyaeva, E.M. and Pilipova, Yu.V., Potato rhizoctonia disease: sclerotia index, Zashch. Karantin Rast., 1999, no. 5, pp. 16–17.Google Scholar
  23. Shternshis, M.V., Trends of microbial pesticides biotechnology developed for plant protection in Russia, Vestn. Tomsk. Gos. Univ., Biol., 2012, no. 2, pp. 92–100.Google Scholar
  24. Smirnov, O.V. and Grishechkina, S.D., Polyfunctional activity of Bacillus thuringiensis Berliner, S-kh. Biol., 2011, no. 3, pp. 123–126.Google Scholar
  25. Sokolova, M.V., Chitinolytic and antifungal activity of three bacterial strains of genus Serratia, in Sovremennaya biotekhnologiya v reshenii problem zashchity rastenii (Modern Biotechnology for Solving Plant Protection Problems), St. Petersburg, 1995, pp. 214–224.Google Scholar
  26. Tao, A., Pang, F., Huang, S., Yu, G., Li, B., and Wang, T., Characterization of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut, Biocontrol Sci. Tecnol., 2014, vol. 24, no. 8, pp. 901–924.CrossRefGoogle Scholar
  27. Xie, S.S., Wu, H.J., Zang, H.Y., Wu, L.M., Zhu, Q.Q., and Gao, X.W., Plant growth promotion by spermidine-producing Bacillus subtilis OKB105, Mol. Plant -Microbe Interact., 2014, vol. 27, no. 7, pp. 655–663.CrossRefPubMedGoogle Scholar
  28. Yu, G.Y., Sinclair, J.B., Hartman, G.L., and Bertagnolli, B.L., Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani, Soil Biol. Biochem., 2002, vol. 34, no. 7, pp. 955–963.CrossRefGoogle Scholar
  29. Zhou, Y., Choi, Y., Sun, M., and Yu, Z., Novel role of Bacillus thuringiensis to control plant diseases, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 4, pp. 563–572.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. A. Bakhvalov
    • 1
  • V. P. Tsvetkova
    • 1
  • T. V. Shpatova
    • 1
  • M. V. Shternshis
    • 1
  • S. D. Grishechkina
    • 2
  1. 1.Novosibirsk State Agrarian UniversityNovosibirskRussia
  2. 2.All-Russian Research Institute for Agricultural MicrobiologySt. Petersburg, Pushkin-8Russia

Personalised recommendations