Advertisement

Numerical Analysis and Applications

, Volume 10, Issue 3, pp 198–206 | Cite as

Choosing an equation of state in mathematical models of pipeline transportation of natural gases

  • E. A. BondarevEmail author
  • A. F. Voevodin
  • K. K. Argunova
  • I. I. Rozhin
Article
  • 54 Downloads

Abstract

In this paper it is shown by a comparison with reliable experimental data in a wide range of pressures and temperatures that the Redlich–Kwong equation of state fits well the distinctive characteristics of the compressibility coefficient, the throttling factor, and the reduced difference of specific isobaric and isochoric heat capacities. It is found that this equation corresponds to the inequalities required to ensure hyperbolicity of the set of equations of real gas flows in pipelines.

Keywords

equation of state natural gas hyperbolic equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shashi Menon, E., Gas Pipeline Hydraulic, New York: Taylor and Francis Group, CRS Press, 2005.CrossRefGoogle Scholar
  2. 2.
    Bobrovsky, S.A., Shcherbakov, S.G., and Yakovlev, E.I., Truboprovodnyi transport gaza (Pipeline Transfer of Gas), Moscow: Nauka, 1976.Google Scholar
  3. 3.
    Lurie, M.V., Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza (Mathematical Modeling of Processes of Pipeline Transportation of Oil, Oil Products, and Gas), Moscow: Publ. House of Gubkin Russian State University of Oil and Gas, 2003.Google Scholar
  4. 4.
    Charny, I.A., Osnovy gazovoi dinamiki (Fundamentals of Gas Dynamics), Moscow: Gostoptekhizdat, 1961.Google Scholar
  5. 5.
    Vasiliev, O.F. and Voevodin, A.F., On Gas-Thermodynamic Calculation of Flows in Simple and Complex Shaped Pipelines (Problem Statement), Izv. SO AN SSSR. Ser. Techn. Sci., 1968, no. 13, pp. 53–62.Google Scholar
  6. 6.
    Vasiliev, O.F., Bondarev, E.A., Voevodin, A.F., and Kanibolotsky, M.A., Neizotermicheskoe techenie gaza v trubakh (Nonisothermal Gas Flow in Pipelines), Novosibirsk: Nauka, 1978.Google Scholar
  7. 7.
    Bondarev, E.A., Vasiliev, V.I., Voevodin, A.F., et al., Termogidrodinamika sistem dobychi i transporta gaza (Thermohydrodynamics of Gas Production and Transport Systems), Novosibirsk: Nauka, 1988.zbMATHGoogle Scholar
  8. 8.
    Bondarev, E.A., Voevodin, A.F., and Nikiforovskaya, V.S., Metody identifikatsii matematicheskikh modelei gidravliki (Identification Methods of Mathematical Models of Hydraulics), Yakutsk: Publ. House of North-Eastern Federal University, 2014.Google Scholar
  9. 9.
    Charny, I.A., Neustanovivshiesya dvizheniya real’noi zhidkosti v trubakh (Unsteady Motion of a Real Fluid in Pipes), Moscow: Nedra, 1975.Google Scholar
  10. 10.
    Voevodin, A.F. and Shugrin, S.M., Metody resheniya odnomernykh evolyutsionnykh sistem (Methods for One-Dimensional Time-Dependent Systems), Novosibirsk: Nauka, 1993.Google Scholar
  11. 11.
    Vukalovich, M.P. and Novikov, I.I., Uravnenie sostoyaniya real’nogo gaza (Equations of State of Real Gases), Moscow–Leningrad: Gosenergoizdat, 1948.Google Scholar
  12. 12.
    Vulis, L.A., Termodinamika gazovykh potokov (Thermodynamics of Gas Flows), Moscow–Leningrad: Gosenergoizdat, 1950.Google Scholar
  13. 13.
    Godunov, S.K., Thermodynamics of Gases and Differential Equations, Uspekhi Mat. Nauk, 1959, vol. 14, no. 5(89), pp. 97–116.Google Scholar
  14. 14.
    Rozhdestvensky, B.L. and Yanenko, N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike (Systems of Quasilinear Equations and Their Applications to Gas Dynamics), Moscow: Nauka, 1988.Google Scholar
  15. 15.
    Reid, R., Prausnitz, J., and Sherwood, T., Svoistva gazov i zhidkostei. Spravochnoe posobie (The Properties of Gases and Liquids. Reference Book), Leningrad: Khimiya, 1982.Google Scholar
  16. 16.
    Brusilovsky, A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdenii nefti i gaza (Phase Transitions in the Development of Oil and Gas Deposits), Moscow: Graal, 2002.Google Scholar
  17. 17.
    Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, 3d ed., New York: Taylor and Francis Group, CRS Press, 2008.Google Scholar
  18. 18.
    NIST Chemistry WebBook; http://webbook.nist.gov/chemistry.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. A. Bondarev
    • 1
    Email author
  • A. F. Voevodin
    • 2
  • K. K. Argunova
    • 1
  • I. I. Rozhin
    • 1
  1. 1.Institute of Oil and Gas Problems, Siberian BranchRussian Academy of SciencesYakutskRussia
  2. 2.M. A. Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations