Advertisement

Numerical Analysis and Applications

, Volume 2, Issue 4, pp 341–351 | Cite as

Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment

  • V. V. PenenkoEmail author
Article

Abstract

Methods for the combined use of mathematical models and observational data for studying and forecasting the evolution of natural processes in the atmosphere, ocean, and environment are presented. Variational principles for estimation of functionals defined on a set of functions of state, parameters and sources of models of processes are a theoretical background. Mathematical models with allowance for uncertainties are considered as constraints to the class of functions. Attention is focused on methods of successive data assimilation and on inverse problems.

Key words

variational principles data assimilation adjoint problems sensitivity analysis uncertainty assessment inverse problems models of atmospheric dynamics and chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brayson, A. and Ho, Yu-Chi, Prikladnaya teoriya optimal’nogo upravleniya (Applied Optimal Control Theory),Moscow: Mir, 1972.Google Scholar
  2. 2.
    Bensoussan, A., Lions, J.-L., and Temam, R., Methods of Decomposition, Decentralization, Coordination, and Their Applications, in Metody vychislitel’noi matematiki (Methods of Numerical Mathematics), Novosibirsk: Nauka, 1975, pp. 144–271.Google Scholar
  3. 3.
    Weinberg, A. and Wigner, E., Fizicheskaya teoriya yadernykh reaktorov (Physical Theory of Nuclear Reactors),Moscow: For. Lit. Publ., 1961.Google Scholar
  4. 4.
    Collatz, L., Funktsional’nyi analiz i vychislitel’naya matematika (Functional Analysis and Numerical Mathematics),Moscow: Mir, 1969.Google Scholar
  5. 5.
    Marchuk, G.I., Metody rascheta yadernykh reaktorov (Methods of Designing Nuclear Reactors), Moscow: Gosatomizdat, 1961.Google Scholar
  6. 6.
    Marchuk, G.I., Chislennoe reshenie zadach dinamiki atmosfery i okeana (Numerical Solution of Problems of Atmospheric and Oceanic Dynamics), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  7. 7.
    Marchuk, G.I., Sopryazhennye uravneniya i analiz slozhnykh sistem (Adjoint Equations and Analysis of Complex Systems),Moscow: Nauka, 1992.zbMATHGoogle Scholar
  8. 8.
    Penenko, A.V., Some Theoretical and Applied Issues of Successive Variational Data Assimilation, Vych. Tekhn., Special Issue, Part 2, Novosibirsk, 2006, vol. 11, pp. 35–40.Google Scholar
  9. 9.
    Penenko, V.V., Computational Aspects of Modeling the Dynamics of Atmospheric Processes and Estimation of the Influence of Various Factors on the Atmospheric Dynamics, Nekotorye problemy vychislitelnoi i prikladnoi matematiki (Some Problems of Numerical and Applied Mathematics), Novosibirsk: Nauka, 1975, pp. 61–76.Google Scholar
  10. 10.
    Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov (Methods of Numerical Simulation of Atmospheric Processes), Leningrad: Gidrometeoizdat, 1981.Google Scholar
  11. 11.
    Penenko, V.V., System Organization of Mathematical Models for Problems of Atmosphere, Ocean, and Environment Physics,Preprint of Computer Center, Siberian Branch Russian Acad. Sci., Novosibirsk, 1985, Preprint no. 619.Google Scholar
  12. 12.
    Penenko, V.V., Variational Principles and Optimization in Interrelated Problems of Ecology and Climate, Proc. Int. Conf. on Numerical Mathematics and Mathematical Modeling, Moscow: Institute of Numerical Mathematics, 2000, vol. I, pp. 135–148.Google Scholar
  13. 13.
    Penenko, V.V., Variational Data Assimilation in Real Time, Vych. Tekhn., Special Issue, Part 1, 2005, vol. 10, pp. 9–20.zbMATHGoogle Scholar
  14. 14.
    Penenko, V.V. and Aloyan, A.E., Modeli i metody dlya zadach okhrany okruzhayushchei sredy (Models and Methods for Environmental Problems), Novosibirsk: Nauka, 1985.Google Scholar
  15. 15.
    Penenko, V.V. and Obraztsov, N.N., A Variational Initialization Method for the Fields of Meteorological Elements, Meteor. Gidrol., 1976, no. 11, pp. 3–16.Google Scholar
  16. 16.
    Samarskii, A.A. and Vabishchevich, P.N., Additivnye skhemy dlya zadach matematicheskoi fiziki (Additive Schemes for Problems of Mathematical Physics),Moscow: Nauka, 2001.Google Scholar
  17. 17.
    Cea, J., Optimizatsiya. Teoriya i algoritmy (Optimization. Theory and Algorithms), Moscow: Mir, 1973.Google Scholar
  18. 18.
    Schwartz, L., Analiz (Analysis),Moscow: Mir, 1972.Google Scholar
  19. 19.
    Cacuci, D.G., Sensitivity Theory for Nonlinear System. I. Nonlinear Functional Analysis Approach, J.Math. Phys., 1981, vol. 22, pp. 2794–2802.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Cacuci, D.G., Sensitivity Theory for Nonlinear System. II. Extensions to Additional Classes of Responses, J. Math. Phys., 1981, vol. 22, pp. 2803–2812.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Courtier, P., Th’epaut, J.N., and Hollingsworth, A., A Strategy for Operational Implementation of 4D-Var, Using an Incremental Approach, Q. J. R. Meteor. Soc., 1994, vol. 120, pp. 1367–1387.CrossRefGoogle Scholar
  22. 22.
    Daescu, D. and Carmichael, G., An Adjoint Sensitivity Method for the Adaptive Location of the Observations in Air Quality Modeling, J. Atmos. Sci., 2003, vol. 60, no. 1, pp. 434–449.CrossRefGoogle Scholar
  23. 23.
    Daley, R.A., Atmospheric Data Assimilation, New York: Cambridge Univ. Press, 1991.Google Scholar
  24. 24.
    Le Dimet, F. and Talagrand, O., Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects, Tellus, 1986, vol. 38A, pp. 97–110.CrossRefGoogle Scholar
  25. 25.
    Elbern, H., Strunk, A. Schmidt, H., and Talagrand, O., Emission Rate and Chemical State Estimation by 4-Dimensional Variational Inversion, Atmos. Chem. Phys., 2007, vol. 7, pp. 3749–3769.CrossRefGoogle Scholar
  26. 26.
    Evensen, G. and Fario, N., Solving for the Generalized Inverse of the Lorenz Model, J. Meteor. Soc. Japan, 1997, vol. 75, pp. 229–243.Google Scholar
  27. 27.
    Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, Trans. ASME J. Basic Eng., 1960, vol. 82, pp. 34–35.Google Scholar
  28. 28.
    Kalman, R.E. and Bucy, R.S., New Results in Linear Filtering and Prediction Theory, Trans. ASME, Ser. D, J. Basic Eng., 1961, vol. 83, pp. 95–107.MathSciNetGoogle Scholar
  29. 29.
    Lorenc, A.C., Analysis Methods for Numerical Weather Prediction, Q. J. R. Meteorol. Soc., 1986, vol. 112, pp. 1177–1194.CrossRefGoogle Scholar
  30. 30.
    Lorenc, A.C., Optimal Nonlinear Objective Analysis, Q. J. R. Meteorol. Soc., 1988, vol. 114, pp. 205–240.CrossRefGoogle Scholar
  31. 31.
    Penenko, V.V., Some Aspects of Mathematical Modeling Using Models together with Observational Data, Bull. NCC, Ser.: Num. Model. Atmosph., 1996, no. 4, pp. 32–51.Google Scholar
  32. 32.
    Penenko, V.V. and Tsvetova, E.A., Variational Fast Data Assimilation Algorithms, Research Activ. Atm. Oc. Model., 2002, WGNE Blue Book Web Site, http://www.cmc.ec.gc.ca/rpn/wgne 01-48.
  33. 33.
    Penenko, V.V. and Tsvetova, E.A., Orthogonal Decomposition Methods for the Inclusion of Climatic Data into Environmental Studies, Ecol. Model., 2008, vol. 217, pp. 279–291.CrossRefGoogle Scholar
  34. 34.
    Penenko, V.V. and Tsvetova, E.A., Discrete-Analytical Methods for the Implementation of Variational Principles in Environmental Applications, J. Comp. Appl. Math., 2009, vol. 226, pp. 319–330.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sasaki, I., An Objective Analysis Based on Variational Method, J. Meteor. Soc. Japan, 1958, vol. 36, no. 3, pp. 29–30.Google Scholar
  36. 36.
    Talagrand, O. and Courtier, P., Variational Assimilation of Meteorological Observations with the Adjoint Vorticity Equation. I: Theory, Quart. J. Roy. Meteor. Soc., 1987, vol. 113, pp. 1311–1328.CrossRefGoogle Scholar
  37. 37.
    Trevisan, A. and Uboldi, F., Assimilation of Standard and Targeted Observations within the Unstable Subspace of the Observation-Analysis-Forecast Cycle System, J. Atmos. Sci., 2004, vol. 65, no. 1, pp. 103–113.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations