Advertisement

Polymer Science, Series D

, Volume 12, Issue 1, pp 41–46 | Cite as

Composite Materials Based on Thermoplastic Matrix

  • P. S. Krivonogov
  • A. E. Shkuro
  • V. V. GlukhikhEmail author
  • O. V. Stoyanov
Article
  • 15 Downloads

Abstract

The results of studies of the properties of composite materials that are obtained on the basis of low-pressure polyethylene and wheat husk with additives of quartz flour, adhesion promoter, and lubricants are given. The influence of the prescription composition of composite materials on the physicomechanical properties of products is determined. Regression dependences of the effect of the composition of composites with wheat husks and polyethylene matrix on physicomechanical characteristics of the products, such as static bending strength, elasticity, and impact toughness, are obtained. The possibility of replacing wood flour with wheat husk for the production of wood–polymer composites is established.

Keywords:

composites production properties polyethylene matrix wheat husk quartz flour adhesion promoter lubricants 

Notes

ACKNOWLEDGMENTS

This work was supported by state order no. 10.4763.2017/8.9.

REFERENCES

  1. 1.
    A. A. Klesov, Wood-Polymer Composites (Nauchnye osnovy i tekhnologii, St. Petersburg, 2010) [in Russian].Google Scholar
  2. 2.
    A. E. Shkuro, V. V. Glukhikh, P. S. Krivonogov, and O. V. Stoyanov, “Fillers of agricultural origin for wood-polymer composites (review),” Vestn. Kazan. Tekhnol. Univ. 17 (21), 160–163 (2014).Google Scholar
  3. 3.
    C. He, R. Hou, J. Xue, and D. Zhu, “The performance of polypropylene wood-plastic composites with different rice straw contents using two methods of formation,” Forest Prod. J. 63 (1), 61–66 (2013).Google Scholar
  4. 4.
    A. A. Hammajam, Z. N. Ismarrubie, and M. S. Sapuan, “Review of agro waste plastic composites production,” J. Miner. Mater. Charact. Eng., No. 1, 271–279 (2013).Google Scholar
  5. 5.
    F. Yao, Q. Wu, Y. Lei, and Y. Xu, “Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading,” Ind. Crops Prod. 28 (1), 63–72 (2008).Google Scholar
  6. 6.
    N. A. Prishchenko, A. M. Zabolotnaya, A. A. Rudenko, D. V. Yarygin, V. P. Dorozhkin, Yu. V. Gulaya, A. A. Dvornitsin, and L. A. Lim, “Prospects for the use of crop waste in the production of polymer composites,” Molodoi Uch., No. 2, 27–30 (2017).Google Scholar
  7. 7.
    S. Panthapulakkal and M. Sain, “Injection molded wheat straw and corn stem filled polypropylene composites,” J. Polym. Environ. 14 (3), 265–272 (2006).Google Scholar
  8. 8.
    A. Schirp, F. J. Loge, K. R. Englund, et al., “Pilot-scale production and material properties of extruded straw-plastic composites based on untreated and fungal-treated wheat straw,” For. Prod. J. 56 (10), 90–96 (2006).Google Scholar
  9. 9.
    F. Mengeloglu and K. Karakus, “Polymer-composites from recycled high-density polyethylene and waste lignocellulosic materials,” Fresenius Environ. Bull. 17 (2), 211–217 (2008).Google Scholar
  10. 10.
    F. Mengeloglu and K. Karakus, “Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites,” Sensors 8 (1), 500–519.Google Scholar
  11. 11.
    M. Zabihzadeh, F. Dastoorian, and G. Ebrahimi, “Effect of MAPE on mechanical and morphological properties of wheat straw/HDPE injection molded composites,” J. Reinforced Plast. Compos. 29 (1), 123–131 (2010).Google Scholar
  12. 12.
    X. Lihui, H. Guangping, W. Dong, et al., “Effect of surface-modified TiO2 nanoparticles on the anti-ultraviolet aging performance of foamed wheat straw fiber/polypropylene composites,” Materials 10 (5), 1‒13 (2017).Google Scholar
  13. 13.
    F. Mengeloglu and K. Karakus, “Mechanical properties of injection-molded foamed wheat straw filled HDPE biocomposites: The effects of filler loading and coupling agent contents,” Bioresources 7 (3), 3293–3305 (2012).Google Scholar
  14. 14.
    R. L. Hou, C. X. He, J. Xie, et al., “UV-accelerated aging properties of wheat straw/PP wood plastic composite,” Acta Mater. Compos. Sin. 30 (5), 86–93 (2013).Google Scholar
  15. 15.
    C. Wolf, V. Guillard, H. Angellier-Coussy, et al., “Water vapor sorption and diffusion in wheat straw particles and their impact on the mass transfer properties of biocomposites,” J. Appl. Polym. Sci. 133 (2016).Google Scholar
  16. 16.
    J. Simonsen, “Utilizing straw as a filler in thermoplastic building materials,” Constr. Build. Mater. 10 (6), 435–440 (1996).Google Scholar
  17. 17.
    I. Shapovalova, A. Vurasko, L. Petrov, E. Kraus, H. Leicht, M. Heilig, and O. Stoyanov, “Hybrid composites based on technical cellulose from rice husk,” J. Appl. Polym. Sci. (2017). doi  https://doi.org/10.1002/APP.45796
  18. 18.
    R. Vadzinskii, Statistical Calculations in Excel (Piter, St. Petersburg, 2008) [in Russian].Google Scholar
  19. 19.
    A. A. Khalafyan, Statistical Data Analysis (OOO Binom-Press, Moscow, 2008) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. S. Krivonogov
    • 1
  • A. E. Shkuro
    • 1
  • V. V. Glukhikh
    • 1
    Email author
  • O. V. Stoyanov
    • 2
  1. 1.Ural State Forestry UniversityYekaterinburgRussia
  2. 2.Kazan State Research Technological UniversityKazanRussia

Personalised recommendations