Advertisement

Polymer Science, Series D

, Volume 10, Issue 4, pp 313–317 | Cite as

Determination of the heat resistance of polymer construction materials by the dynamic mechanical method

  • V. O. Startsev
  • M. V. Molokov
  • A. N. Blaznov
  • M. E. Zhurkovskii
  • V. T. Erofeev
  • I. V. Smirnov
Article
  • 13 Downloads

Abstract

Russian and foreign standards for the techniques for the determination of the heat resistance of polymer materials are analyzed and the incorrectness of their use for polymer construction materials is shown. The determination of the heat resistance by the low-frequency dynamic mechanical method based on the temperature derivative extrema of the dynamic modulus of elasticity and the dynamic loss modulus under the transition of polymer matrices from the glassy to the highly elastic state is experimentally substantiated for multicomponent polymer compositions with dispersed or fibrous fillers.

Keywords

Martens heat resistance polymer concrete fiberglass dynamic modulus of elasticity loss modulus glass-transition temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Malkin, A. A. Askadskii, and V. V. Kovriga, Methods for Measuring the Mechanical Properties of Polymers (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  2. 2.
    GOST (State Standard) 21341–2014: Plastics and Ebonite. Method for Determining Heat Resistance According to Martens (Standartinform, Moscow, 2016) [in Russian].Google Scholar
  3. 3.
    GOST (State Standard) 15088–2014: Plastics. Method for Determining the Softening Temperature of Thermoplastics According to Wick (Standartinform, Moscow, 2014) [in Russian].Google Scholar
  4. 4.
    ASTM D 1525: Standard Test Method for Vicat Softening Temperature of Plastics.Google Scholar
  5. 5.
    ASTM D 648–07: Standard Test Method for Deflection Temperature of Plastics under Flexural Load in Edgewise Position.Google Scholar
  6. 6.
    ISO 75–1: Plastics. Determination of Temperature of Deflection under Load. Part 1. General Test Method.Google Scholar
  7. 7.
    ISO 75–2: Plastics. Determination of Temperature of Deflection under Load. Part 2. Plastics and Ebonite.Google Scholar
  8. 8.
    ISO 75–3: Plastics. Determination of Temperature of Deflection under Load. Part 3. High-Strength Thermosetting Laminates and Long-Fibre-Reinforced Plastics.Google Scholar
  9. 9.
    V. V. Samoilenko, E. V. Atyasova, A. N. Blaznov, et al., “Investigation of the heat resistance of polymer composites based on epoxy matrices,” Polzunovskii Vestn., No. 4, 131–135 (2015).Google Scholar
  10. 10.
    V. V. Samoilenko, E. V. Atyasova, A. N. Blaznov, and V. N. Mitrofanov, “Investigation of heat resistance of reinforced plastics by Martens,” in Technologies and Equipment of Chemical, Biotechnological and Food Industries (Izd. AltGTU, Biisk, 2015), pp. 182–185.Google Scholar
  11. 11.
    O. V. Startsev, Yu. G. Skurydin, E. M. Skurydina, L. T. Startseva, and M. V. Molokov, “Influence of barothermic hydrolysis conditions on the glass transition temperature of oak wood,” Vse Mater., Entsikl. Sprav., No. 2, 15–21 (2016).Google Scholar
  12. 12.
    O. V. Startsev, A. S. Krotov, O. G. Senatorova, L. I. Anikhovskaya, V. V. Antipov, and D. V. Grashchenkov, “Corrosion and diffusion of moisture in layered metal-polymer composite materials of the “SIAL” type,” Materialovedenie, No. 12, 38–44 (2011).Google Scholar
  13. 13.
    O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Investigation of the thermophysical aging of aviation fiberglass,” Klei, Germetiki, Tekhnol., No. 8, 18–21 (2009).Google Scholar
  14. 14.
    E. N. Kablov, O. V. Startsev, I. S. Deev, and E. F. Nikishin, “Properties of polymer composite materials after the action of open space in near-earth orbits,” Vse Mater., Entsikl. Sprav., No. 10, 2–9 (2012).Google Scholar
  15. 15.
    O. V. Startsev, A. Yu. Makhon’kov, I. S. Deev, and E. F. Nikishin, “Investigation of aging of carbon-fiber plastic KMU-4l after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 1. Initial state,” Vopr. Materialoved., No. 4, 61–68 (2013).Google Scholar
  16. 16.
    O. V. Startsev, A. Yu. Makhon’kov, I. S. Deev, and E. F. Nikishin, “Investigation of aging of carbon-fiber plastic KMU-4l after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 2. Influence of the location of plates in multilayer packs,” Vopr. Materialoved., No. 4, 69–76 (2013).Google Scholar
  17. 17.
    E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials for aviation use. 2. Relaxation of the initial structural nonequilibrium and a gradient of properties by thickness,” Deform. Razrush. Mater., No. 12, 40–46 (2010).Google Scholar
  18. 18.
    E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials for aviation use. 3. Significant aging factors,” Deform. Razrush. Mater., No. 1, 34–40 (2011).Google Scholar
  19. 19.
    L. T. Startseva, S. V. Panin, O. V. Startsev, and A. S. Krotov, “Diffusion of moisture in fiberglass after their climatic aging,” Dokl. Akad. Nauk 456 (3), 305–309 (2014).Google Scholar
  20. 20.
    T. A. Nizina, V. O. Startsev, V. P. Selyaev, D. R. Nizin, and O. V. Startsev, “Climatic stability of epoxy composites under the influence of sea climate,” in Sb. Tr. Fourteenth International Sci.-Tech. Conf. Topical Issues of Architecture and Construction (Saransk, 2015), pp. 257–263.Google Scholar
  21. 21.
    O. Y. Alothman, F. N. Almajhdi, and H. Fouad, “Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration,” Biomed. Eng. Online 12, 15 (2013).CrossRefGoogle Scholar
  22. 22.
    O. V. Startsev, E. N. Kablov, and A. Yu. Makhon’kov, “Regularities of the transition of epoxy binding composites based on dynamic mechanical analysis,” Vestn. Mosk. Gos. Tekh. Univ im. N. E. Baumana, Ser. Mashinostr., No. SP2, 104–113 (2011).Google Scholar
  23. 23.
    A. Yu. Makhon’kov and O. V. Startsev, “Influence of the temperature gradient in the measuring chamber of a torsional pendulum on the accuracy of determining the glass transition temperature of a PCM binder,” Materialovedenie, No. 7, 47–52 (2013).Google Scholar
  24. 24.
    Dynamic Mechanical Analysis DMA 242 D (2016}). http://www.paralab.pt/sitesGoogle Scholar
  25. 25.
    ASTM D4065: Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures.Google Scholar
  26. 26.
    Handbook of Thermoset Plastics, 3rd ed., Ed. by H. Dodiuk and S. Goodman (Elsevier Inc., Amsterdam, 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. O. Startsev
    • 1
  • M. V. Molokov
    • 1
  • A. N. Blaznov
    • 2
  • M. E. Zhurkovskii
    • 2
  • V. T. Erofeev
    • 3
  • I. V. Smirnov
    • 3
  1. 1.All-Russian Scientific-Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Institute for Problems of Chemical and Energetic Technologies, Siberian BranchRussian Academy of SciencesBiiskRussia
  3. 3.Ogarev Mordovia State UniversitySaranskRussia

Personalised recommendations