Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Amino Acid Composition of Green Microalgae and Diatoms, Cyanobacteria, and Zooplankton (Review)

  • 68 Accesses


We have reviewed foreign and domestic literature devoted to the study of the amino acid (AA) composition of aquatic organisms representing major groups of producers (green microalgae and diatoms, and cyanobacteria) and primary consumers (zooplankton). Based on published data, we estimate the composition of essential and nonessential AAs of microalgae, cyanobacteria, and zooplankton and determine their differences. It is concluded that the AA composition of major groups of plankton is heterogeneous. The role of AAs as a limiting factor for the development of herbivorous zooplankton is discussed. The prospects and the need for further study of AA composition in order to develop a complete theory of functioning of aquatic ecosystems have been demonstrated.

This is a preview of subscription content, log in to check access.


  1. 1

    Goryunova, S.V., Rzhanova, G.N., and Orlananskii, V.N., Sinezelenye vodorosli (Cyanobacteriae), Moscow: Nauka, 1969.

  2. 2

    Elyakova, L.A., Svetashova, T.G., and Lakizova, I.Yu., The role of histidine for the activity of β-1,3-glucanase IV from Spisula sachalinensis, Bioorg. Khim., 1977, vol. 3, no. 3, pp. 415–421.

  3. 3

    Kolmakova, A.A., Gladyshev, M.I., and Kalacheva, G.S., Differences in the amino acid content of dominant phytoplankton species from a eutrophic reservoir, Dokl. Biol. Sci., 2007, vol. 415, no. 5, pp. 310–312.

  4. 4

    Sakevich, A.I. and Klochenko, P.D., Free amino acids in the ecological metabolism of algae, Gidrobiol. Zh., 1996, vol. 32, no. 5, pp. 33–41.

  5. 5

    Trubachev, N.I., Gitel’zon, I.I., Kalacheva, G.S., et al., The biochemical composition of some Cyanobacteriae and Chlorella, Prikl. Biokhim. Mikrobiol., 1976, vol. 12, no. 2, pp. 196–202.

  6. 6

    Chernova, E.N., Russkikh, Ya.V., Afonina, E.I., et al., Mass spectrometric analysis of microcystins in cyanobacterial biomass: optimization of sample preparation procedures, Ekol. Khim., 2016, vol. 24, no. 4, pp. 205–217.

  7. 7

    Admiraal, W., Peletier, H., and Laame, R.W.P.M., Nitrogen metabolism of marine planktonic diatoms: excretion, assimilation and cellular pools of free amino acid in seven species with different cell size, J. Exp. Mar. Biol. Ecol., 1986, vol. 98, no. 3, pp. 241–263.

  8. 8

    Ahlgren, G., Gustafsson, I.-B., and Boberg, M., Fatty acid content and chemical composition of freshwater microalgae, J. Phycol., 1992, vol. 28, no. 1, pp. 37–50.

  9. 9

    Ahlgren, G. and Hyenstrand, P., Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae), J. Phycol., 2003, vol. 39, pp. 906–917.

  10. 10

    Akgul, R., Kizilkaya, B., Akgul, F., and Erdugan, H., Amino acid composition and crude protein values of some Cyanobacteria from Canakkale (Turkey), Pak. J. Pharm. Sci., 2015, vol. 28, no. 5, pp. 1757–1761.

  11. 11

    Anderson, T.R., Boersma, M., and Raubenheimer, D., Stoichiometry: linking elements to biochemicals, Ecology, 2004, vol. 85, pp. 1193–1202.

  12. 12

    Aragao, C., Conceicao, L.E.C., Dinis, M.T., and Fuhn, H.-J., Amino acid pool of rotifers and Artemia under different conditions: nutritional implications for fish larvae, Aquaculture, 2004, vol. 234, nos. 1–4, pp. 429–445.

  13. 13

    Becker, E.W., Micro-algae as a source of protein, Biotechnol. Adv., 2007, vol. 25, pp. 207–210.

  14. 14

    Birge, E.A. and Juday, C., The organic content of lake water, Proc. Natl. Acad. Sci. U.S.A., 1926, vol. 12, no. 8, pp. 515–519.

  15. 15

    Brown, M.R. and Jeffrey, S.W., Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments, J. Exp. Mar. Biol. Ecol., 1992, vol. 161, no. 1, pp. 91–113.

  16. 16

    Brown, M.R. and Jeffrey, S.W., The amino acid gross composition of marine diatoms potentially useful for mariculture, J. Appl. Phycol., 1995, vol. 6, pp. 521–527.

  17. 17

    Brown, M.R., Dunstan, G.A., Norwood, S.J., and Miller, K.A., Effect of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana,J. Phycol., 1996, vol. 32, no. 1, pp. 64–73.

  18. 18

    Brucet, S., Boix, D., Lopez-Flores, R., et al., Ontogenetic changes of amino acid composition in planktonic crustacean species, Mar. Biol. (Berlin), 2005, vol. 48, no. 1, pp. 131–139.

  19. 19

    Consden, R., Gordon, A.H., and Martin, A.J.P., Qualitative analysis of proteins: a partition chromatographic method using paper, Biochem. J., 1944, vol. 38, no. 3, pp. 224–232.

  20. 20

    Cowey, C.B. and Corner, E.D.S., On the nutrition and metabolism of zooplankton ii. the relationship between the marine copepod Calanus helgolandicus and particulate material in Plymouth sea water, in terms of amino acid composition, J. Mar. Biol. Ass. U.K., 1963, vol. 43, pp. 495–511.

  21. 21

    Cowgill, U.M., Emmel, H.W., Hopkins, D.L., et al., Variation in chemical composition, reproductive success and body weight of daphnia magna in relation to diet, Int. Rev. gesamt. Hydrobiol., Hydrogr., 1986, vol. 71, no. 1, pp. 79–99.

  22. 22

    Dabrowski, K. and Rusiecki, M., Content of total free amino acids in zooplanktonic food of fish larvae, Aquaculture, 1983, vol. 30, nos. 1–4, pp. 31–42.

  23. 23

    Dortch, Q., Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids and protein in three marine diatoms, J. Exp. Mar. Biol. Ecol., 1982, vol. 61, no. 3, pp. 243–264.

  24. 24

    Dubovskaya, O.P., Klimova, E.P., Kolmakov, V.I., et al., Seasonal dynamic of phototrophic epibionts on crustacean zooplankton in a eutrophic reservoir with cyanobacterial bloom, Aquat. Ecol., 2005, vol. 39, no. 2, pp. 167–180.

  25. 25

    Eisenhut, M., Bauwe, H., and Hagemann, M., Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions, FEMS Microbiol. Lett., 2007, vol. 277, no. 2, pp. 232–237.

  26. 26

    Forster, I. and Ogata, H.Y., Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major,Aquaculture, 1998, vol. 161, pp. 131–142.

  27. 27

    Fowden, L., Amino-acids of certain algae, Nature, 1951, vol. 167, pp. 1030–1031.

  28. 28

    Fowden, L.A., A comparison of the compositions of some algal proteins, Ann. Bot., 1954, vol. 18, no. 71, pp. 257–266.

  29. 29

    Flynn, K.J. and Al-Amoudi, O.A., Effects of N deprivation and darkness on composition of free amino acid release from diatom Phaeodactylum tricornutum Bohlin, J. Exp. Mar. Biol. Ecol., 1988, vol. 119, no. 2, pp. 131–143.

  30. 30

    Granum, E., Kirkvold, S., and Myklestad, S.M., Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion, Mar. Ecol. Progr. Ser., 2002, vol. 242, pp. 83–84.

  31. 31

    Guisande, C., Maneiro, I., and Riveiro, I., Homeostasis in the essential amino acid composition of the marine copepod Euterpina acutifrons,Limnol. Oceanogr., 1999, vol. 44, no. 3, pp. 691–696.

  32. 32

    Guisande, C., Riveiro, I., and Maneiro, I., Comparison among the amino acid composition of females, eggs and food to determine the relative importance of food quantity and food quality to copepod reproduction, Mar. Ecol.: Proc. Ser., 2000, vol. 202, nos. 1–4, pp. 135–142.

  33. 33

    Guisande, C., Bartumeus, F., Ventura, M., and Catalan, J., Role of food partitioning in structuring the zooplankton community in mountain lakes, Oecologia, 2003, vol. 136, no. 4, pp. 627–634.

  34. 34

    Guisande, C., Biochemical fingerprints in zooplankton, Limnetica, 2006, vol. 25, nos. 1–2, pp. 369–376.

  35. 35

    Halawlaw, Y.I., Spirulina microalgae: a food for future, Pinnacle Biotech., 2014, vol. 1, no. 2, pp. 249–255.

  36. 36

    Hanson, J.A. and Dietz, T.H., The role of free amino acids in cellular osmoregulation in the freshwater bivalve Ligumia subrostrata (Say), Can. J. Zool., 1976, vol. 54, no. 11, pp. 1927–1931.

  37. 37

    Hanamachi, Y., Hama, T., and Yanai, T., Decomposition process of organic matter derived from freshwater phytoplankton, Limnology, 2008, vol. 9, pp. 57–69.

  38. 38

    Hecky, R.E., Mopper, K., Kilham, P., and Degens, E.T., The amino acid and sugar composition of diatom cell walls, Mar. Biol. (Berlin), 1973, vol. 19, pp. 323–331.

  39. 39

    Helland, S., Triantaphullidis, G., Fuhn, H., et al., Modulation of the free pool and protein content in populations of the brine shrimp Artemia spp., Mar. Biol. (Berlin), 2000, vol. 137, no. 5, pp. 1005–1016.

  40. 40

    Helland, S., Nejstgaard, J.C., Humlen, R., et al., Effects of season and material food on Calanus finmarchicus reproduction, with emphasis on the free amino acids, Mar. Biol. (Berlin), 2003, vol. 142, no. 6, pp. 1141–1151.

  41. 41

    Helland, S., Terjesen, B., and Berg, L., Free amino acid and protein content in the planktonic copepod Temora longicornis compared to Artemia franciscana,Aquaculture, 2003, vol. 215, nos. 1–4, pp. 213–228.

  42. 42

    Helland, S., Nejstgaard, J.C., Humlen, R., et al., Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females, Mar. Biol. (Berlin), 2003, vol. 143, no. 2, pp. 297–306.

  43. 43

    Hempel, N., Petrick, I., and Behrendt, F., Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production, J. Appl. Phycol., 2012, vol. 24, no. 6, pp. 1407–1418.

  44. 44

    Kalachova, G.S., Kolmakova, A.A., Gladyshev, M.I., et al., Seasonal dynamics of amino acids in two small Siberian reservoirs dominated by prokaryotic and eukaryotic phytoplankton, Aquat. Ecol., 2004, vol. 38, pp. 3–15.

  45. 45

    Khatoon, H., Banerjee, S., Yusoff, F.M., and Shariff, M., Evaluation of indigenous marine periphytic Amphora, Navicula and Cymbella grown on substrate as feed supplement in Penaeus monodon postlarval hatchery system, Aquacult. Nutr., 2009, vol. 15, pp. 186–193.

  46. 46

    Kibria, G., Nugegoda, D., Fairclough, R., et al., Utilization of wastewater-grown zooplankton: nutritional quality of zooplankton and performance of silver perch Bidyanus bidyanus (Mitchell, 1838) (Teraponidae) fed on wasterwater-grown zooplankton, Aquacult. Nutr., 1999, vol. 5, no. 4, pp. 221–227.

  47. 47

    Kleppel, G.S., Burkart, C.A., and Houchin, L., Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa,Limnol. Oceanogr., 1998, vol. 43, no. 5, pp. 1000–1007.

  48. 48

    Koch, U., Martin-Creuzburg, D., Grossart, H.-P., and Straile, D., Single dietary amino acids control resting egg production and affect population growth of a key freshwater herbivore, Oecologia, 2011, vol. 167, pp. 981–989.

  49. 49

    Kolmakova, A.A., Gladyshev, M.I., Kalachova, G.S., et al., Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river, Freshwater Biol., 2013, vol. 58, no. 10, pp. 2180–2195.

  50. 50

    Laloraya, V.K. and Mitra, A.K., Free amino acid composition of some nitrogen fixing blue-green algae in heterocystous and non-heterocystous condition, Experientia, 1970, vol. 26, no. 1, pp. 39–40.

  51. 51

    Li, P., Mai, K., Trushenski, J., and Wu, G., New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds, Amino Acids, 2009, vol. 37, pp. 43–53.

  52. 52

    Martin-Jezequel, V., Sournia, A., and Birrien, J.-L., A daily study of the diatom spring bloom at Roscoff (France) in 1985. III. Free amino acids composition studied by HPLC analysis, J. Plankton Res., 1992, vol. 14, no. 3, pp. 409–421.

  53. 53

    Misurcova, L., Bunka, F., Ambrozova, J.V., et al., Amino acid composition of algal products and its contribution to RDI, Food Chem., 2014, vol. 151, pp. 120–125.

  54. 54

    Mitra, G., Mukhopadhyay, P.K., and Ayyappan, S., Biochemical composition of zooplankton community grown in freshwater earthen ponds: nutritional implication in nursery rearing of fish larvae and early juveniles, Aquaculture, 2007, vol. 272, nos. 1–4, pp. 346–360.

  55. 55

    Natrah, F.M., Yusoff, F.M., Shariff, M., et al., Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value, J. Appl. Phycol., 2007, vol. 19, no. 6, pp. 711–718.

  56. 56

    Ogbonda, K.H., Aminigo, R.E., and Abu, G.O., Influence of temperature and ph on biomass production and protein biosynthesis in a putative Spirulina sp., Bioresour. Technol., 2007, vol. 98, no. 11, pp. 2207–2211.

  57. 57

    Ovie, S.I. and Ovie, S.O., Moisture, protein, and amino acid contents of three freshwater zooplankton used as feed for aquacultured larvae and postlarvae, Isr. J. Aquacult., 2006, vol. 58, no. 1, pp. 29–33.

  58. 58

    Rosa, R. and Nunes, M.L., Seasonal patterns of nucleic acid concentrations and amino acid profiles of Parapenaeus longirostris (Crustacea, Decapoda): relation to growth and nutritional condition, Hydrobiologia, 2005, vol. 537, pp. 207–216.

  59. 59

    Samek, D., Misurcova, L., Machu, L., et al., Influencing of amino acid composition of green freshwater algae and cyanobacterium by methods of cultivation, Turk. J. Biochem., 2013, vol. 38, no. 4, pp. 360–368.

  60. 60

    Shim, Y.-S., Yoon, W.-J., Ha, J., et al., Method validation of 16 types of structural amino acids using an automated amino acid analyzer, Food Sci. Biotechnol., 2013, vol. 22, no. 6, pp. 1567–1571.

  61. 61

    Sorimachi, K., Evolutionary changes reflected by the cellular amino acid composition, Amino Acids, 1999, vol. 17, pp. 207–226.

  62. 62

    Sorimachi, K., The classification of various organisms according to the free amino acid composition change as the result of biological evolution, Amino Acids, 2002, vol. 22, pp. 55–69.

  63. 63

    Spackman, D.H., Stein, W.H., and Moore, S., Automatic recording apparatus for use in chromatography of amino acids, Anal. Chem., 1958, vol. 30, no. 7, pp. 1190–1206.

  64. 64

    Sterner, R.W. and Hessen, D.O., Algal nutrient limitation and the nutrition of aquatic herbivores, Ann. Rev. Ecol. System, 1994, vol. 25, pp. 1–29.

  65. 65

    Tibbetts, S.M., Milley, J.E., and Lall, S.P., Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors, J. Appl. Phycol., 2015, vol. 27, pp. 1109–1119.

  66. 66

    Wacker, A. and Martin-Creuzburg, D., Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids, Funct. Ecol., 2012, vol. 26, no. 5, pp. 1135–1143.

  67. 67

    Wang, S.-K., Hu, Y.-R., Wang, F., et al., Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors, Bioresour. Technol., 2014, vol. 156, pp. 117–122.

  68. 68

    Williams, A.E. and Burris, R.H., Nitrogen fixation by blue-green algae and their nitrogenous composition, Am. J. Bot., 1952, vol. 39, no. 5, pp. 340–342.

  69. 69

    Wu, G., Amino acids: metabolism, functions, and nutrition, Amino Acids, 2009, vol. 37, pp. 1–17.

  70. 70

    Ventura, M. and Catalan, J., Variability in amino acid composition of alpine crustacean zooplankton and its relationship with nitrogen-15 fractionation, J. Plankton Res., 2010, vol. 32, no. 11, pp. 1583–1597.

  71. 71

    Vidoudez, C. and Pohnert, G., Comparative metabolomies of the diatom Skeletonema marinoi in different growth phases, Metabolomics, 2012, vol. 8, no. 4, pp. 654–669.

  72. 72

    Yancey, P.H., Clark, M.E., Hand, S.C., et al., Living with water stress: evolution of osmolyte systems, Science, 1982, vol. 217, pp. 1214–1222.

Download references


State task of the basic research program of the Russian Federation, topic number VI.51.S.

Author information

Correspondence to A. A. Kolmakova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolmakova, A.A., Kolmakov, V.I. Amino Acid Composition of Green Microalgae and Diatoms, Cyanobacteria, and Zooplankton (Review). Inland Water Biol 12, 452–461 (2019).

Download citation


  • amino acids
  • microalgae
  • Cyanobacteria
  • zooplankton
  • aquatic ecosystem