Advertisement

Inland Water Biology

, Volume 12, Issue 1, pp 96–103 | Cite as

Content of Fatty Acids in Forage Objects of Juveniles of Salmonids from Rivers of the Lake Onega Basin

  • S. A. MurzinaEmail author
  • Z. A. Nefedova
  • S. N. Pekkoeva
  • A. E. Veselov
  • I. A. Baryshev
  • P. O. Ripatti
  • N. N. Nemova
ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • 2 Downloads

Abstract

The forage base of juveniles of salmonids (Atlantic salmon and brown trout) from six rivers of the Lake Onega basin has been analyzed: invertebrate organisms of 23 taxa have been identified. In the macrozoobenthos samples, the content and ratio of fatty acids (FAs) of total lipids are determined. Differences in the ratio of essential 18:3ω-3/18:2ω-6 FAs are found, and the ratio is higher in zoobenthos collected from “salmon” rivers than in those of “brown trout” rivers (within 1.68–2.83 and 0.44–1.08, respectively). The ratio of saturated FAs/polyunsaturated FAs (0.66–0.97 and 0.33–0.59, respectively) in the zoobenthos from salmon rivers is higher than in forage from the brown trout rivers. The content and ratio of physiologically important FAs in the feeding objects of young fish of salmonids have a significant effect on their growth and development.

Keywords:

macrozoobenthos Atlantic salmon brown trout fatty acids rivers of the Lake Onega basin 

Notes

ACKNOWLEGEMENTS

This study was carried out with financial support from the Russian Science Foundation (project no. 14-24-00102).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Baryshev, I.A., Factors forming the macrozoobenthic communities of rocky rapids and shoals of streams in eastern Fennoscandia, Zh. Obshch. Biol., 2014, vol. 75, no. 2, pp. 124–131.Google Scholar
  2. 2.
    Baryshev, I.A. and Veselov, A.E., Seasonal dynamics of benthos and drift of invertebrate organisms in some tributaries of Lake Onega, Biol. Vnutr. Vod, 2007, no. 1, pp. 80–86.Google Scholar
  3. 3.
    Baryshev, I.A. and Kukharev, V.I., The effect of a lotic lake on the zoobenthos structure in a fast river (a case study of the Lizhma River, Lake Onega basin), Uch. Zap. Petrozavodsk. Gos. Univ., 2011, no. 6 (119), pp. 16–19.Google Scholar
  4. 4.
    Voronin, V.P., Murzina, S.A., and Pekkoeva, S.N., Fatty acid composition of macrozoobenthic food objects of juvenile salmonids in the rivers of the European North, in Materialy dokladov XXIII Vserossiiskoi molodezhnoi nauchnoi konferentsii (s elementami nauchnoi shkoly) “Aktual’nye problemy biologii i ekologii” (Proc. XXIII All-Russia Youth Sci. Conf. (with elements of scientific school) “Actual Problems of Biology and Ecology”), Syktyvkar, 2016, pp. 57–59.Google Scholar
  5. 5.
    Latyshev, N.A., Khardin, A.S., and Kiyashko, S.I., Fatty acids as markers of starfish food sources, Dokl. Biol. Sci., 2001, vol. 380, pp. 489–491.CrossRefGoogle Scholar
  6. 6.
    Metodicheskie rekomendatsii po izucheniyu gidrobiologicheskogo rezhima malykh rek (Guidelines for the Study of Hydrobiological Regime of Small Rivers), Petrozavodsk: Inst. Biol. Karel. Nauch. Tsentra Akad. Nauk SSSR, 1989.Google Scholar
  7. 7.
    Opredelitel' presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii (Identification Guide to Freshwater Invertebrates of Russia and Adjacent Countries), vol. 5: Vysshie nasekomye: Rucheiniki. Babochki. Zhuki. Setchatokrylye (Higher Insects: Caddisflies, Butterflies, Beetles, and Lacewings), St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 2001.Google Scholar
  8. 8.
    Pavlov, D.S., Meshcheryakova, O.V., Veselov, A.E., et al., Parameters of energy metabolism in juveniles of Atlantic salmon Salmo salar living in the mainstream and in the tributary of the Varzuga River (the Kola Peninsula), J. Ichthyol., 2007, vol. 47, no. 9, pp. 774–781.CrossRefGoogle Scholar
  9. 9.
    Pavlov, D.S., Nefedova, Z.A., Veselov, A.E., et al., Lipid status of fingerlings of the Atlantic salmon Salmo salar from different microbiotopes of the Varzuga River, J. Ichthyol., 2008, vol. 48, no. 8, pp. 648–654.CrossRefGoogle Scholar
  10. 10.
    Regerand, T.I., Nefedova, Z.A., Toivonen, L.T., et al., Lipid metabolism of caddisfly larvae at low pH, Russ. J. Dev. Biol., 2002, vol. 33, no. 4, pp. 236–241.CrossRefGoogle Scholar
  11. 11.
    Sergeeva, M.G. and Varfolomeeva, A.T., Kaskad arakhidonovoi kisloty (Arachidonic Acid Cascade), Moscow: Narodnoe Obrazovanie, 2006.Google Scholar
  12. 12.
    Smirnov, Yu.A., Shustov, Yu.A., and Khrennikov, V.V., Characteristic of behavior and feeding of juvenile Onega salmon Salmo salar L. morpha sebago (Girard) in winter, Vopr. Ikhtiol., 1976, vol. 16, no. 3, pp. 557–559.Google Scholar
  13. 13.
    Sushchik, N.N., The role of essential fatty acids in trophometabolic interactions in freshwater ecosystems (review), Zh. Obshch. Biol., 2008, vol. 69, no. 4, pp. 299–316.Google Scholar
  14. 14.
    Fleming, Ya., Reproduction of Atlantic salmon, in Atlanticheskii losos' (Atlantic Salmon), St. Petersburg: Nauka, 1998, pp. 127–141.Google Scholar
  15. 15.
    Khrennikov, V.V., Benthos of Lake Onega tributaries, in Lososevye reki Onezhskogo ozera. Biologicheskii rezhim, ispol’zovanie (Salmon-Rich Rivers of Lake Onega: Biological Regime and Use), Leningrad: Nauka, 1978, pp. 41–50.Google Scholar
  16. 16.
    Tsyganov, E.P., A method of direct methylation of lipids after TLC without their elution from silica gel, Lab. Delo, 1971, no. 8, pp. 490–493.Google Scholar
  17. 17.
    Chertoprud, M.V., Structural variability of lithorheophylic macrobenthic communities, Zh. Obshch. Biol., 2007, vol. 68, no. 6, pp. 424–434.Google Scholar
  18. 18.
    Shustov, Yu.A., Ekologicheskie aspekty povedeniya molodi lososevykh ryb v rechnykh usloviyakh (Environmental Aspects of the Behavior of Juvenile Salmonids in River Conditions), St. Petersburg: Nauka, 1995.Google Scholar
  19. 19.
    Arts, M.T. and Kohler, C.C., Health and condition of fish: the influence of lipids on membrane competency and immune response, in Lipids in Aquatic Ecosystem, New York: Springer, 2009, pp. 237–257.Google Scholar
  20. 20.
    Brett, M. and Muller-Navarra, D., The role of highly unsaturated fatty acids in aquatic food-web processes, Freshwater Biol., 1997, vol. 38, pp. 483–499.CrossRefGoogle Scholar
  21. 21.
    Descroix, A., Desvilettes, C., Bec, A., et al., Impact of macroinvertebrate diet on growth and fatty acid profiles of restocked 0+ Atlantic salmon (Salmo salar L.) parr from a large European river (the Allier), Can. J. Fish. Aquat. Sci., 2010, vol. 67, pp. 1–14.CrossRefGoogle Scholar
  22. 22.
    Engström-Öst, J., Lehtiniemi, M., Jónasdóttir, S.H., and Viitasalo, M., Growth of pike larvae (Esox lucius) under different conditions of food quality and salinity, Ecol. Freshwater Fish., 2005, vol. 14, pp. 385–393.CrossRefGoogle Scholar
  23. 23.
    Folch, J., Lees, M., and Sloan-Stanley, G.H., A simple method for the isolation and purification of total lipids animal tissue (for brain, liver and muscle), J. Biol. Chem., 1957, vol. 226, pp. 497–509.Google Scholar
  24. 24.
    Fraser, A.J., Sargent, J.R., Gamble, J.C., and Seaton, D.D., Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae, Mar. Chem., 1989, vol. 27, pp. 1–18.CrossRefGoogle Scholar
  25. 25.
    Hansen, O.J., Puvanendran, V., Jostensen, J.P., and Ous, C., Effects of dietary levels and ratio of phosphatidylcholine and phosphatidylinositol on the growth, survival and deformity levels of Atlantic cod larvae and early juveniles, Aquat. Res., 2010, pp. 1–8.Google Scholar
  26. 26.
    Jonasdottir, S.H., Effects of food quality on the reproductive success of Acartia tonsa and Acartia hydsonica: laboratory observations, Mar. Biol. (Berlin), 1994, vol. 121, pp. 67–81.CrossRefGoogle Scholar
  27. 27.
    Lee, D.J., Roehm, J.N., Yu, T.C., and Sinnhuber, R.O., Effect of omega-3 fatty acids on the growth rate of rainbow trout, Salmo gairdneri, J. Nutr., 1967, no. 92, pp. 93–98.Google Scholar
  28. 28.
    Legezynska, J., Kedra, M., and Walkusz, W., When season does not matter: summer and winter trophic ecology of arctic amphipods, Hydrobiologia, 2012, vol. 684, pp. 189–214.CrossRefGoogle Scholar
  29. 29.
    Makhutova, O.N., Sharapova, T.A., Kalachova, G.S., et al., Characteristics of fatty acid composition of Gammarus lacustris inhabiting lakes with and without fish, Dokl. Biochem. Biophys., 2011, vol. 466, no. 1, pp. 20–22.CrossRefGoogle Scholar
  30. 30.
    Meinelt, T., Schulz, C., Wirth, M., et al., Dietary fatty acid composition influences the fertilization rate of zebrafish (Danio rerio Hamilton Buchanan), J. Appl. Ichthyol., 1999, vol. 15, pp. 19–23.CrossRefGoogle Scholar
  31. 31.
    Miller, M.R., Nichols, P.D., and Carter, C.G., Replacement of dietary fish oil for Atlantic salmon parr (Salmo salar L.) with a stearidonic acid containing oil has no effect on omega-3 long-chain polyunsaturated fatty acid concentrations, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2007, vol. 146, no. 2, pp. 197–206.CrossRefGoogle Scholar
  32. 32.
    Müller-Navarra, D.C., Brett, M.T., Liston, A.M., and Goldman, C.R., A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers, Nature, 2000, vol. 403, pp. 74–77.CrossRefGoogle Scholar
  33. 33.
    Sargent, J.R. and Henderson, R.J., Lipids. The Biological Chemistry of Marine Copepods, Oxford: Clarendon Press, 1986.Google Scholar
  34. 34.
    Sidell, B.D., Crokett, E.L., and Driezdic, W.R., Antarctic fish tissues preferably catabolise monoenoic fatty acids, J. Exp. Zool., 1995, vol. 271, pp. 73–81.CrossRefGoogle Scholar
  35. 35.
    Viron, C., Saunois, A., Andre, P., Perly, B., and Laffose, M., Isolation and identification of unsaturated fatty acid methyl esters from marine microalgae, Anal. Chim. Acta, 2000, vol. 409, pp. 257–266.CrossRefGoogle Scholar
  36. 36.
    Youdim, K.A., Martin, A., and Joseph, J.A., Essential fatty acids and the brain: possible health implications, Int. J. Dev. Neurosci., 2000, vol. 18, pp. 383–399.CrossRefGoogle Scholar
  37. 37.
    Zhukova, N.V. and Aizdaicher, N.A., Fatty acid composition of 15 species of marine microalgae, Phytochemistry, 1995, vol. 39, pp. 351–356.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Murzina
    • 1
    Email author
  • Z. A. Nefedova
    • 1
  • S. N. Pekkoeva
    • 1
  • A. E. Veselov
    • 1
  • I. A. Baryshev
    • 1
  • P. O. Ripatti
    • 1
  • N. N. Nemova
    • 1
  1. 1.Institute of Biology, Karelian Research Center, Russian Academy of SciencesPetrozavodskRussia

Personalised recommendations