Advertisement

Inland Water Biology

, Volume 12, Issue 1, pp 57–67 | Cite as

Coenocompleх and Ecological Features of Hydrilla verticillata (L. f.) Royle (Hydrocharitaceae) in Northern Eurasia

  • A. N. EfremovEmail author
  • B. F. Sviridenko
  • Ya. V. Bolotova
  • C. Toma
  • Yu. A. Murashko
HIGHER AQUATIC PLANTS
  • 5 Downloads

Abstract

Hydrilla verticillata (L. f.) Royle is a hydatophyte with a disjunctive semicosmopolite range playing a significant role in the functioning of aquatic ecosystems. The structure of the coenocompleх of the species in northern Eurasia includes 19 associations belonging to 17 formations of the freshwater macrophyte vegetation. Ninety-one species of hydromacrophytes have been recorded as part of the phytocoenosis with the participation of H. verticillata. Associations Hydrilla verticillata (Northern Eurasia) and Nymphaea candida— Ceratophyllum demersum + Hydrilla verticillata (Eastern Europe and Western and Central Siberia) have the widest geographical range. This paper describes the tolerance limits of H. verticillata to major abiotic factors: type of bottom soil, flow rate, trophicity, saprobity, alluviality, and content of main ions of dissolved salts and soluble forms of heavy metals in the water. In environmental terms, H. verticillata should be regarded as a freshwater alkaliphylic oligo-mesotrophic oligo-β-mesosaprobic mesoalluvialitic psammopelophyt.

Keywords:

Hydrilla verticillata Hydrocharitaceae Northern Eurasia coenocompleх ecology tolerance 

Notes

ACKNOWLEDGMENTS

We are grateful to T.V. Sviridenko for help in determining samples of macroalgae and L.M. Kipriyanova for advice on methodological issues and reviewers and whose comments improved the quality of publication.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Aleksandrova, V.D., Klassifikatsiya rastitel’nosti: obzor printsipov klassifikatsii i klassifikatsionnykh skhem v raznykh geobotanicheskikh shkolakh (Vegetation Classification: a Review of Classification Principles and Schemes in Different Geobotanical Schools), Leningrad: Nauka, 1969.Google Scholar
  2. 2.
    Barinova, S.S., Medvedeva, L.A., and Anisimova, O.V., Bioraznoobrazie vodoroslei-indikatorov okruzhayushchei sredy (Biodiversity of Algae–Environmental Indicators), Tel-Aviv: Pilies Studio, 2006.Google Scholar
  3. 3.
    GOST 3351-74. Voda pit’evaya. Metody opredeleniya vkusa, zapakha, tsvetnosti i mutnosti (GOST 3351-74. Drinking Water. Methods for Determining the Taste, Odor, Color, and Turbidity), Moscow: Izd. Standartov, 2003.Google Scholar
  4. 4.
    Evzhenko, K.S., Flora and vegetation of water bodies of valleys of right-bank tributaries of the Irtysh River, Cand. Sci. (Biol.) Dissertation, Omsk, 2011.Google Scholar
  5. 5.
    Katanskaya, V.M. and Raspopov, I.M., Methods for the study of higher aquatic vegetation, in Rukovodstvo po metodam gidrobiologicheskogo analiza vod i donnykh otlozhenii (Manual of Methods of Hydrobiological Analysis of Water and Sediment), Leningrad: Gos. komitet SSSR po gidrometeorologii i kontrolyu prirodnoi sredy, 1983, pp. 129–218.Google Scholar
  6. 6.
    Kipriyanova, L.M., Diversity of aquatic and coastal-aquatic plant communities of Berd Gulf of the Novosibirsk Reservoir, Sib. Ekol. Zh., 2000, no. 2, pp. 195–207.Google Scholar
  7. 7.
    Kipriyanova, L.M., Vegetation of the Berd River and its tributaries (Novosibirsk oblast, Western Siberia), Rastitel’nost’ Rossii, 2008, no. 12, pp. 12–38.Google Scholar
  8. 8.
    Kolichestvennyi khimicheskii analiz vod. Metodika vypolneniya izmerenii pH v vodakh potentsiometricheskim metodom. PND F 14.1:2:3:4.121-97 (Quantitative chemical analysis of water. Methods for potentiometric measuring of water pH. PND F 14.1:2:3:4.121-97), Moscow: Minprirody Rossii, 2004.Google Scholar
  9. 9.
    Kolichestvennyi khimicheskii analiz vod. Metodika izmerenii massovoi kontsentratsii alyuminiya, bariya, berilliya, vanadiya, zheleza, kadmiya, kobal’ta, litiya, margantsa, medi, molibdena, mysh’yaka, nikelya, svintsa, selena, serebra, strontsiya, titana, khroma, tsinka v probakh prirodnykh i stochnykh vod atomno-absorbtsionnym metodom s elektrotermicheskoi atomizatsiei s ispol’zovaniem atomno-absorbtsionnogo spektrometra modifikatsii MGA-915, MGA-915M, MGA-915MD. PND F 14.1:2.253-09 (Quantitative Chemical Analysis of Water. Method for Determination of Mass Concentration of Aluminum, Barium, Beryllium, Vanadium, Iron, Cadmium, Cobalt, Lithium, Manganese, Copper, Molybdenum, Arsenic, Nickel, Lead, Selenium, Silver, Strontium, Titanium, Chromium, Zinc in the Samples of Natural and Waste Water by Atomic Absorption Spectrometry with Electrothermal Atomization Using Mga-915 Atomic Absorption Spectrometer Modifications LSA-915M and LSA-915MD), Moscow: OOO Lyumeks-marketing, 2013.Google Scholar
  10. 10.
    Metody kolichestvennogo khimicheskogo analiza. Sbornik metodik vypolneniya izmerenii (Methods for Quantitative Chemical Analysis. Collection of Measurement Procedures), Moscow: ZAO Akvilon, 2012.Google Scholar
  11. 11.
    Opredelitel' presnovodnykh vodoroslei SSSR (Key to Freshwater Algae of USSR), Leningrad: Nauka, 1951.Google Scholar
  12. 12.
    Sviridenko, B.F., Flora i rastitel’nost' vodoemov Severnogo Kazakhstana (Flora and Vegetation of Water Bodies of Northern Kazakhstan), Omsk: Omsk. Gos. Ped. Univ., 2000.Google Scholar
  13. 13.
    Sviridenko, B.F., Mamontov, Yu.S., and Sviridenko, T.V., Ispol’zovanie gidromakrofitov v kompleksnoi otsenke ekologicheskogo sostoyaniya vodnykh ob"ektov Zapadno-Sibirskoi ravniny (The Use of Hydromacrophytes in Comprehensive Assessment of Environmental State of Water Bodies of the West Siberian Plain), Omsk: Amfora, 2011.Google Scholar
  14. 14.
    Sviridenko, B.F., Murashko, Yu.A., Sviridenko, T.V., and Efremov, A.N., Tolerance of hydromacrophytes to active reaction, salinity, and water hardness in natural and anthropogenic water bodies of the West Siberian Plain, Vestn. Nizhnevartov. Gos. Univ., Biol. Nauki, 2016, no. 2, pp. 8–17.Google Scholar
  15. 15.
    Chepinoga, V.V., Flora i rastitel’nost' vodoemov Baikal’skoi Sibiri (Flora and Vegetation of Water Bodies of Baikal Siberia), Irkutsk: Inst. Geogr. Sib. Otd. Ross. Akad. Nauk, 2015.Google Scholar
  16. 16.
    Cherepanov, S.K., Sosudistye rasteniya Rossii i sopredel’nykh gosudarstv (v predelakh byvshego SSSR) (Vascular Plants of Russia and adjacent Countries (within the Former USSR)), St. Petersburg: Mir i sem’ya, 1995.Google Scholar
  17. 17.
    Unifitsirovannye metody analiza vod SSSR (Standardized Methods of Analysis of Waters of the USSR), Leningrad: Gidrometeoizdat, 1978.Google Scholar
  18. 18.
    Barko, J.W. and Michael, R., Smart sediment-related mechanisms of growth limitation in submersed macrophytes, Ecology, 1986, vol. 67, no. 5, pp. 1328–1340.CrossRefGoogle Scholar
  19. 19.
    Cook, C.D.K. and Lüönd, R., A revision of the genus Hydrilla (Hydrocharitaceae), Aquat. Bot., 1982, vol. 13, pp. 485–504.CrossRefGoogle Scholar
  20. 20.
    Cooley, Th.N., Dooris, P.M., and Martin, D.F., Aeration as a tool to improve water quality and reduce the growth of Hydrilla, Water Res., 1980, vol. 14, no. 5, pp. 485–489.CrossRefGoogle Scholar
  21. 21.
    Jabłońska, E. and Kłosowski, S., Ecology of rare water plant communities in lakes of north-eastern Poland, Acta. Soc. Bot. Pol., 2012, vol. 81, no. 1, pp. 3–9.  https://doi.org/10.5586/asbp.2012.006 CrossRefGoogle Scholar
  22. 22.
    Kahara, S.N. and Vermaat, J.E., The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of freshwater macrophytes, Aquat. Bot., 2003, vol. 75, pp. 217–227.CrossRefGoogle Scholar
  23. 23.
    Klosowski, S., The relationships between environmental factors and the submerged Potametea associations in lakes of north-eastern Poland, Hydrobiology, 2006, vol. 560, pp. 15–29.CrossRefGoogle Scholar
  24. 24.
    Madeira, P.T., Jacono, C.C., and Van, T.K., Monitoring Hydrilla using two RAPD procedures and the nonindigenous aquatic species database, J. Aqaut. Plant Manage., 2000, vol. 38, pp. 33–40.Google Scholar
  25. 25.
    Mony, C., Koschnick, T.J., Haller, W.T., and Muller, S., Competition between two invasive Hydrocharitaceae (Hydrilla verticillata (L. f.) (Royle) and Egeria densa (Planch)) as influenced by sediment fertility and season, Aquat. Bot., 2007, vol. 86, pp. 236–242. 2006.11.007.  https://doi.org/10.1016/j.aquabot
  26. 26.
    Pietsch, W., Zur Bioindikation Najas marina L. s.1. und Hydrilla verticillata (L. fil.) Royle-reicher Gewasser Mitteleuropas, Feddes Repertorium, 1981, vol. 92, nos. 1–2, pp. 126–173.Google Scholar
  27. 27.
    Sousa, W.T.Z., Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem, Hydrobiologia, 2011, vol. 669, pp. 1–20.CrossRefGoogle Scholar
  28. 28.
    Spencer, W.E., Wetzel, R.G., and Teeri, J., Photosynthetic phenotype plasticity and the role of phosphoenolpyruvate carboxylase in Hydrilla verticillata, Plant. Sci., 1996, vol. 118, pp. 1–9.CrossRefGoogle Scholar
  29. 29.
    Van, T.K., Haller, W.T., and Bowes, G., Comparison of the photosynthetic characteristics of three submersed aquatic plants, Plant. Physiol., 1976, vol. 58, pp. 761–768.CrossRefGoogle Scholar
  30. 30.
    Van, T.K., Haller, W.T., Bowes, G., and Garrard, L.A., Effects of light quality on growth and chlorophyll composition in Hydrilla, J. Aquat. Plant Manage., 1977, vol. 15, pp. 29–31.Google Scholar
  31. 31.
    Van, T.K., Differential responses to photoperiods in monoecious and dioecious Hydrilla verticillata, Weed Res., 1989, vol. 37, pp. 552–556.Google Scholar
  32. 32.
    White, A., Reiskind, J.B., and Bowes, G., Dissolved inorganic carbon influences the photosynthetic responses of Hydrilla to photoinhibitory conditions, Aquat. Bot., 1996, vol. 53, pp. 3–13.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Efremov
    • 1
    Email author
  • B. F. Sviridenko
    • 2
  • Ya. V. Bolotova
    • 3
  • C. Toma
    • 4
  • Yu. A. Murashko
    • 2
  1. 1.Omsk State Pedagogical UniversityOmskRussia
  2. 2.Surgut State UniversitySurgutRussia
  3. 3.Amur Branch of the Botanical Garden Institute, Far East Branch, Russian Academy of SciencesBlagoveshchenskRussia
  4. 4.Kazimierz Wielki UniversityBydgoszczPoland

Personalised recommendations