Advertisement

Inland Water Biology

, Volume 11, Issue 4, pp 501–506 | Cite as

Activity of Digestive Enzymes in Perch Infected with Triaenophorus nodulosus (Pallas) Plerocercoids

  • T. F. Frolova
  • A. N. Parshukov
  • G. I. Izvekova
ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS

Abstract

It is revealed that the infection of older groups of perch with T. nodulosus plerocercoids reduces the activity of enzymes, ensuring the initial stages of the assimilation of protein components in fish food. The infection does not affect the activity of glycosidases. The infection changes the ratio of activities of the above groups of enzymes and possibly reduces the efficiency of fish feeding. In addition, the proportion of serine proteinases and metalloproteinases decrease, while the percentage of unidentified proteases significantly increases in the gut of infected fish.

Keywords:

fishes cestodes Triaenophorus nodulosus plerocercoid digestive enzymes 

Notes

REFERENCES

  1. 1.
    Anikieva, L.V. and Rumyantsev, E.A., Cestodes of fish in lakes of Karelia, in Problemy tsestodologii (Problems of Cestodology), St. Petersburg: Ross. Akad. Nauk, Parazitol. O-vo, Zool. Inst., 2005, pp. 40–62.Google Scholar
  2. 2.
    Gerasimov, Yu.V., Ivanova, M.N., Stolbunov, I.A., and Pavlov, D.D., Perch, in Ryby Rybinskogo vodokhranilishcha: populyatsionnaya dinamika i ekologiya (Fishes of the Rybinsk Reservoir: Population Dynamics and Ecology), Yaroslavl: Filigran’, 2015, pp. 331–347.Google Scholar
  3. 3.
    Dyatlov, M.A., Ryby Ladozhskogo ozera (rasprostranenie, morfometriya, ekologiya, promyshlennoe ispol’zovanie) (Fishes of Lake Ladoga (Distribution, Morphometry, Ecology, and Industrial Use)), Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2002.Google Scholar
  4. 4.
    Izvekova, G.I., Physiological characteristics of the relationship between Triaenophorus nodulosus (Cestoda) and its hosts, fishes, Parazitologiya, 2001, vol. 35, no. 1, pp. 60–68.Google Scholar
  5. 5.
    Izvekova, G.I. and Solov’ev, M.M., Activity of digestive hydrolases of fishes during cestode infection, Usp. Sovrem. Biol., 2012, vol. 132, no. 6, pp. 601–610.Google Scholar
  6. 6.
    Izvekova, G.I. and Solov’ev, M.M., Characteristics of the effect of cestodes parasitizing the fish intestine on the activity of the host proteinases, Biol. Bull. (Moscow), 2016, vol. 43, no. 2, pp. 146–151.CrossRefGoogle Scholar
  7. 7.
    Kuperman, B.I., Lentochnye chervi roda Triaenophorus— parazity ryb (Tapeworms of the Genus Triaenophorus—Fish Parasites), Leningrad: Nauka, 1973.Google Scholar
  8. 8.
    Kurovskaya, L.Ya., Coupling of digestive processes in the Bothriocephalus acheilognathi–carp system, Parazitologiya, 1991, vol. 25, no. 5, pp. 441–449.Google Scholar
  9. 9.
    Pronina, S.V. and Pronin, N.M., Vzaimootnosheniya v sistemakh gel’minty—ryby (Relationships in the Helminths–Fish Systems), Moscow: Nauka, 1988.Google Scholar
  10. 10.
    Sorvachev, K.F., Osnovy biokhimii pitaniya ryb (Basics of Biochemistry of Fish Nutrition), Moscow: Legkaya Pishchevaya Prom-st', 1982.Google Scholar
  11. 11.
    Ugolev, A.M., Iezuitova, N.N., Masevich, Ts.G., et al., Issledovanie pishchevaritel’nogo apparata u cheloveka (obzor sovremennykh metodov) (Investigation of the Digestive Apparatus in Humans (Review of Modern Methods)), Leningrad: Nauka, 1969.Google Scholar
  12. 12.
    Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsessy i adaptatsii u ryb (Digestive Processes and Adaptation in Fishes), St. Petersburg: Gidrometeoizdat, 1993.Google Scholar
  13. 13.
    Alarcón, F.J., Martínez, T.F., Barranco, P., et al., Digestive proteases during development of larvae of red palm weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae), Insect Biochem. Mol. Biol., 2002, vol. 32, pp. 265–274.CrossRefGoogle Scholar
  14. 14.
    Dimes, L.E., Garcia-Carreno, F.L., and Haard, N.F., Estimation of protein digestibility-III. Studies on the digestive enzymes from the pyloric ceca of rainbow trout and salmon, Comp. Biochem. Physiol. A, 1994, vol. 109, no. 2, pp. 349–360.CrossRefGoogle Scholar
  15. 15.
    Eshel, A., Lindner, P., Smirnoff, P., et al., Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater, Comp. Biochem. Physiol. A, 1993, vol. 106, no. 4, pp. 621–634.CrossRefGoogle Scholar
  16. 16.
    Filippov, A.A. and Golovanova, I.L., Separate and joint effect of copper and zinc in vitro on a velocity of carbohydrate hydrolysis in freshwater teleosts, Inland Water Biol., 2010, vol. 3, no. 1, pp. 96–101. doi 10.1134/S199508291001013XCrossRefGoogle Scholar
  17. 17.
    Garcґía-Carreño, F.L. Albuquerque-Cavalcanti, C., et al., Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): characteristics and effects of protein quality, Comp. Biochem. Physiol., 2002, vol. 132B, pp. 343–352.CrossRefGoogle Scholar
  18. 18.
    Golovanova, I.L., Kuz’mina, V.V., Chuiko, G.M., et al., Impact of polychlorinated biphenyls on the activity of intestinal proteinases and carbohydrases in juvenile roach Rutilus rutilus (L.), Inland Water Biol., 2011, vol. 4, no. 2, pp. 249–255. doi 10.1134/S1995082911020064CrossRefGoogle Scholar
  19. 19.
    Izvekova, G.I. and Tyutin, A.V., Activity of digestive enzymes and distribution of the trematode Bunodera luciopercae (Müller) in the intestine of juvenile perch infected with plerocercoids of Triaenophorus nodulosus (Pallas), Inland Water Biol., 2014, vol. 7, no. 2, pp. 167–171. doi 10.1134/S1995082914010076CrossRefGoogle Scholar
  20. 20.
    Jónás, E., Rágyanszki, M., Oláh, J., and Boross, L., Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hypuphthalmichthys molitrix Val.) and omnivorous (Cyprinus carpio L.) fishes, Aquaculture, 1983, vol. 30, pp. 145–154.CrossRefGoogle Scholar
  21. 21.
    Kumar, S., Garcia-Carreño, F.L., Chakrabarti, R., et al., Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: partial characterization and protein hydrolysis efficiency, Aquacult. Nutr., 2007, vol. 13, pp. 381–388.CrossRefGoogle Scholar
  22. 22.
    Lutterschmidt, W.I., Schaefer, J.F., and Fiorillo, R.A., The ecological significance of helminth endoparasites on the physiological performance of two sympatric fishes, Comp. Parasitol., 2007, vol. 74, no. 2, pp. 194–203.CrossRefGoogle Scholar
  23. 23.
    Munilla-Morán, R. and Saborido-Rey, F., Digestive enzymes in marine species. I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus), Comp. Biochem. Physiol. B, 1996, vol. 113, no. 2, pp. 395–402.Google Scholar
  24. 24.
    Natalia, Y., Hashim, R., Ali, A., and Chong, A., Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae), Aquaculture, 2004, vol. 233, pp. 305–320.CrossRefGoogle Scholar
  25. 25.
    Siringan, P., Raksakulthai, N., and Yongsawatdigul, J., Autolytic activity and biochemical characteristics of endogenous proteinases in Indian anchovy (Stolephorus indicus), Food Chem., 2006, vol. 98, pp. 678–684.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. F. Frolova
    • 1
  • A. N. Parshukov
    • 2
  • G. I. Izvekova
    • 1
  1. 1.Papanin Institute for Biology of Inland Waters, Russian Academy of SciencesBorokRussia
  2. 2.Institute of Biology of Karelian Research Centre, Russian Academy of SciencesPetrozavodskRussia

Personalised recommendations