Advertisement

Inland Water Biology

, Volume 11, Issue 4, pp 456–464 | Cite as

Integral Indicators of Variability of Arctodiaptomus salinus (Daday, 1885) (Copepoda, Diaptomidae) and Their Possible Use in Assessing the Population State

  • N. V. Shadrin
  • E. V. Anufriieva
ZOOPLANKTON, ZOOBENTHOS, AND ZOOPERIPHYTON
  • 9 Downloads

Abstract

The intrapopulation morphometric variability of the widespread species Arctodiaptomus salinus (Daday, 1885) has been studied in different water bodies of the Mediterranean and Black Sea regions. The authors evaluate the effect of temperature, salinity, and population density; estimate the integral characteristics of the variability levels and connectivity of morphometric parameters; and discuss the possibility of using these integral characteristics for diagnostics of the planktonic-crustacean population status.

Keywords:

Copepoda zooplankton connectivity of parameters destabilization of populations morphometric variability 

Notes

ACKNOWLEDGMENTS

We are grateful to F. Marrone for the samples from Spain, Italy, and Tunisia provided as a courtesy. This work was carried out as part of the Government Procurement from the Kovalevskii Institute of Marine Biological Research, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.Google Scholar
  2. 2.
    Andreeva, S.I. and Andreev, N.I., Evolyutsionnye preobrazovaniya dvustvorchatykh mollyuskov Aral’skogo morya v usloviyakh ekologicheskogo krizisa (The Evolutionary Transformations of Bivalves of the Aral Sea Under the Environmental Crisis Conditions), Omsk: Omsk. Gos. Pedagog. Univ., 2003.Google Scholar
  3. 3.
    Astaurov, B.L., The study of inherited disorders of bilateral symmetry in relation to the variability of identical structures within an organism, in Nasledstvennost’ i razvitie (Heredity and Development), Moscow: Nauka, 1974, pp. 54–109.Google Scholar
  4. 4.
    Bukvareva, E.N. and Aleshchenko, G.M., The principle of optimal diversity of biological systems, Usp. Sovrem. Biol., 2005, vol. 125, no. 4, pp. 337–348.Google Scholar
  5. 5.
    Gershenzon, S.M., The “mobilization reserve” of intraspecific variability, Zh. Obshch. Biol., 1941, vol. 2, no. 1, pp. 85–107.Google Scholar
  6. 6.
    Drapun, I.E., Shell length variability in adult individuals of common species of pelagic ostracods in South Atlantic, Biol. Morya, 2002, no. 62, pp. 46–51.Google Scholar
  7. 7.
    Egorkina, G.I., Tsareva, G.A., and Bender, Yu.A., Correlations of morphometric characters of Artemia from Bol’shoe Yarovoe Lake, Vestn. Altai. Gos. Agrar. Univ., 2009, no. 6, pp. 39–42.Google Scholar
  8. 8.
    Zelikman, A.L. and Geinrikh, A.K., On the problem of the impact of population density on the mortality and development of its components in the cyclops Eucyclops serrulatus (Copepoda, Cyclopoida), Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1959, vol. 64, no. 4, pp. 125–140.Google Scholar
  9. 9.
    Istomin, A.V., Sexual dimorphism of the correlation of development of morphological characters, Vestn. Pskov. Gos. Univ., Ser. Estestv. Fiz.-Mat. Nauki, 2009, no. 8, pp. 18–23.Google Scholar
  10. 10.
    Kovalev, A.V., Variability of some planktonic Copepoda (Crustacea) in the Mediterranean Sea basin, Biol. Morya, 1969, no. 17, pp. 144–197.Google Scholar
  11. 11.
    Lajus, D.L., Graham, J.H., Katolikova, M.V., and Yurtseva, A.O., Fluctuating asymmetry and random phenotypic variability in population studies: history, advances, problems, and prospects, Vestn. S.-Peterb. Univ., 2009, ser. 3, no. 3, pp. 98–110.Google Scholar
  12. 12.
    Mikhailovskii, G.E., Opisanie i otsenka sostoyanii planktonnykh soobshchestv (Description and Assessment of the State of Planktonic Communities), Moscow: Nauka, 1988.Google Scholar
  13. 13.
    Rauzer-Chernousova, D.M., Geological survey of Lake Solenoe in Kruglaya Bay in the vicinity of Sevastopol, Izv. Akad. Nauk SSSR. Otd. Fiz.-Mat. Nauk, 1928, no. 3, pp. 273–298.Google Scholar
  14. 14.
    Sapunov, V.B., Adaptation to changes in environmental conditions and the phenotypic variability of aphids, Zh. Obshch. Biol., 1983, vol. 44, no. 4, pp. 557–567.Google Scholar
  15. 15.
    Shadrin, N.V., Has the balance–energy approach in hydrobiology exhausted itself: opportunities and limitations, Morsk. Ekol. Zh., 2011, vol. 10, no. 1, pp. 98–103.Google Scholar
  16. 16.
    Shadrin, N.V., The dynamics of ecosystems and evolution: the plurality of stable states and overturning/no return point. The need for a new understanding, Morsk. Ekol. Zh., 2012, vol. 11, no. 2, pp. 85–95.Google Scholar
  17. 17.
    Shakin, V.V., Biosystems under extreme conditions, Zh. Obshch. Biol., 1991, vol. 52, no. 6, pp. 784–792.Google Scholar
  18. 18.
    Schmalhausen, I.I., Stabilizing selection and its place among the factors of evolution, Zh. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307–354.Google Scholar
  19. 19.
    Anufriieva, E.V., Do copepods inhabit hypersaline waters worldwide? A short review and discussion, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1354–1361.CrossRefGoogle Scholar
  20. 20.
    Anufriieva, E.V. and Shadrin, N.V., Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations, Zool. Res., 2014, vol. 35, no. 2, pp. 132–141.Google Scholar
  21. 21.
    Anufriieva, E. and Shadrin, N., Resting stages of crustaceans in the Crimean hypersaline lakes (Ukraine) and their ecological role, Acta Geol. Sin. (Engl. Ed.), 2014, vol. 88, suppl. 1, pp. 46–49.Google Scholar
  22. 22.
    Anufriieva, E.V. and Shadrin, N.V., Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean–Black Sea region, Zool. Res., 2015, vol. 36, no. 6, pp. 328–336.Google Scholar
  23. 23.
    Boyko, E.G., Litvinenko, L.I., Kutsanov, K.V., and Gabdullin, M.A., Specific features of the biology of Artemia in lakes of the Urals and Western Siberia, Russ. J. Ecol., 2012, vol. 43, no. 4, pp. 333–340.CrossRefGoogle Scholar
  24. 24.
    Clarke, G.M., The genetic basis of developmental stability. V. Inter- and intra-individual character variation, Heredity, 1998, vol. 80, no. 5, pp. 562–567.CrossRefGoogle Scholar
  25. 25.
    Dongen, S.V., Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future, J. Evol. Biol., 2006, vol. 19, no. 6, pp. 1727–1743.CrossRefGoogle Scholar
  26. 26.
    Hairston, N.G., Kearns, C.M., and Ellner, S.P., Phenotypic variation in a zooplankton egg bank, Ecology, 1996, vol. 77, no. 8, pp. 2382–2392.CrossRefGoogle Scholar
  27. 27.
    Jimenez-Melero, R., Parra, G., Souissi, S., and Guerrero, F., Post-embryonic developmental plasticity of Arctodiaptomus salinus (Copepoda: Calanoida) at different temperatures, J. Plankton Res., 2007, vol. 29, no. 6, pp. 553–567.CrossRefGoogle Scholar
  28. 28.
    Lajus, D. and Alekseev, V., Components of morphological variation in Baikalian endemial cyclopid Acanthocyclops signifer complex from different localities, Hydrobiologia, 2000, vol. 417, no. 1, pp. 25–35.CrossRefGoogle Scholar
  29. 29.
    Lajus, D., Sukhikh, N., and Alekseev, V., Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex, Ecol. Evol., 2015, vol. 5, no. 12, pp. 2374–2385.CrossRefGoogle Scholar
  30. 30.
    Matthews, B., Hausch, S., Winter, C., et al., Contrasting ecosystem-effects of morphologically similar copepods, PLoS One, 2011, vol. 6, no. 11. e26700.CrossRefGoogle Scholar
  31. 31.
    May, R.M., Stability and Complexity in Model Ecosystems, Monographs in Population Biology, Princeton: Princeton Univ. Press, 1974, vol. 6.Google Scholar
  32. 32.
    Müller, P.H., Neuman, P., and Storm, R., Tafeln der mathematischen Statistik, Leipzig: Fachbuchverlag, 1979.Google Scholar
  33. 33.
    Shadrin, N.V. and Anufriieva, E.V., Size polymorphism and fluctuating asymmetry of Artemia (Branchiopoda: Anostraca) populations from the Crimea, Zh. Sib. Fed. Univ., Ser. Biol., 2017, vol. 10, no. 1, pp. 114–126.Google Scholar
  34. 34.
    Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, vol. 150, no. 3811, pp. 563–565.CrossRefGoogle Scholar
  35. 35.
    Wagner, G.P. and Altenberg, L., Perspective: complex adaptations and the evolution of evolvability, Evolution, 1996, vol. 50, no. 3, pp. 967–976.CrossRefGoogle Scholar
  36. 36.
    Whitehouse, I.V. and Levis, B.G., The effect of diet and density on development, size and egg production in Cyclops abyssorum Sars, 1863 (Copepoda, Cyclopoida), Crustaceana, 1973, vol. 25, no. 3, pp. 225–236.CrossRefGoogle Scholar
  37. 37.
    Williamson, P.G., Palaeontological documentation of speciation in cenozoic mollusks from Turkana basin, Nature, 1981, vol. 293, no. 5832, pp. 437–443.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kovalevsky Institute of Marine Biological Research, Russian Academy of SciencesSevastopolRussia

Personalised recommendations