Advertisement

Lobachevskii Journal of Mathematics

, Volume 40, Issue 1, pp 42–54 | Cite as

Bayesian Inference for the Negative Binomial-Sushila Linear Model

  • Darika YamrubboonEmail author
  • Ampai ThongteeraparpEmail author
  • Winai BodhisuwanEmail author
  • Katechan JampachaisriEmail author
  • Andrei VolodinEmail author
Article
  • 12 Downloads

Abstract

The aim of this article is to develop a new linear model for count data. The main idea is in an application of a new generalized linear model framework, which we call the Negative Binomial-Sushila linear model. The Negative Binomial-Sushila distribution has been proposed recently and applied to count data. This distribution is constructed as a mixture of the Negative Binomial and Sushila distributions. The mixed distribution is a flexible alternative to the Poisson distribution when over-dispersed count data is analyzed. The parameters of this distribution are estimated using a Bayesian approach with R2jags package of the R language. The Negative Binomial-Sushila linear model is applied to fit two real data sets with an over-dispersion and its performance is compared with the performance of some traditional models. The results show that the Negative Binomial-Sushila generalized linear model fits the data sets better than the traditional generalized models for these data sets.

Keywords and phrases

count data Negative Binomial-Sushila distribution generalized linear model over-dispersion Bayesian approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Ozmen and F. Famoye, “Count regression models with an application to zoological data containing structural zeros,” J. Data Sci. 5 (4), 491–502 (2007).Google Scholar
  2. 2.
    J. Hilbe, Negative Binomial Regression (Cambridge Univ. Press, New York, 2011).CrossRefzbMATHGoogle Scholar
  3. 3.
    M. Bulmer, “On fitting the Poisson lognormal distribution to species–abundance data,” Biometrics 30 (1), 101–110 (1974).CrossRefzbMATHGoogle Scholar
  4. 4.
    E. Gómez–Deńiz, J. Sarabia, and E. Calderín–Ojeda “Univariate and multivariate versions of the negative binomial–inverse Gaussian distributions with applications,” Insurance: Math. Econ. 42 (1), 39–49 (2008).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Z. Hossein and I. Noriszura, “Negative binomial–Lindley distribution and its application,” J. Math. Stat. 6 (1), 4–9 (2010).CrossRefzbMATHGoogle Scholar
  6. 6.
    S. Aryuyuen and W. Bodhisuwan, “The negative binomial–generalized exponential (NB–GE) distribution,” Appl. Math. Sci. 7 (22), 1093–1105 (2013).MathSciNetGoogle Scholar
  7. 7.
    N. Johnson, A. Kemp, and S. Kotz, Univariate Discrete Distributions (Wiley, Chichester, 2005).CrossRefzbMATHGoogle Scholar
  8. 8.
    J. Hilbe, Modeling Count Data (Cambridge Univ. Press, New York, 2014).CrossRefGoogle Scholar
  9. 9.
    A. Agresti, An Introduction to Categorical Data Analysis (Wiley, New York, 1996).zbMATHGoogle Scholar
  10. 10.
    J. Ntzoufras, Bayesian Modeling Using WinBUGS (Wiley, Hoboken, NJ, 2011).zbMATHGoogle Scholar
  11. 11.
    J. Lawless, “Negative binomial and mixed Poisson regression,” Canad. J. Stat. 15 (3), 209–225 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Rodrsguez–Avi, A. Conde–Sańchez, A. Saéz–Castillo, M. Olmo–Jimeńez, and A. Martínez–Rodríguez, “A generalizedWaring regression model for count data,” Comput. Stat. Data Anal. 53 (10), 3717–3725 (2009).CrossRefzbMATHGoogle Scholar
  13. 13.
    H. Zamani, N. Ismail, and P. Faroughi, “Poisson–weighted exponential univariate version and regression model with applications,” J. Math. Stat. 10 (2), 148 (2014).CrossRefGoogle Scholar
  14. 14.
    W. Wongrin and W. Bodhisuwan, “Generalized Poisson–Lindley linear model for count data,” J. Appl. Stat. 44 (15), 2659–2671 (2016).MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Geedipally, D. Lord, and S. Dhavala, “The negative binomial–Lindley generalized linear model: characteristics and application using crash data,” Accident Anal. Prevent. 45, 258–265 (2012).CrossRefGoogle Scholar
  16. 16.
    P. Vangala, D. Lord, and S. Geedipally, “Exploring the application of the Negative Binomial–Generalized Exponential model for analyzing traffic crash data with excess zeros,” Anal. Methods Accident Res. 7, 29–36 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Yamrubboon, W. Bodhisuwan, C. Pudprommarat, and L. Saothayanun, “The Negative Binomial–Sushila distribution with application in count data analysis,” Thailand Stat. 15 (1), 69–77 (2017).zbMATHGoogle Scholar
  18. 18.
    J. Nelder and R. Wedderburn, “Generalized linear models,” J. R. Stat. Soc., Ser. A: Gen. 135 (3), 370–384 (1972).CrossRefGoogle Scholar
  19. 19.
    R. Shanker, S. Sharma, U. Shanker, and R. Shanker, “Sushila distribution and its application to waiting times data,” Opinion—Int. J. Business Manage. 3 (2), 1–11 (2013).Google Scholar
  20. 20.
    A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin, Bayesian Data Analysis (CRC, Boca Raton, FL, 2014).zbMATHGoogle Scholar
  21. 21.
    R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing (Vienna, Austria, 2010).Google Scholar
  22. 22.
    D. Spiegelhalter, N. Best, B. Carlin, and A. van der Linde, “Bayesian measures of model complexity and fit,” J. R. Stat. Soc., Ser. B: Stat. Methodol. 64 (4), 583–639 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    D. Lunn, C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter, The BUGS Book: A Practical Introduction to Bayesian Analysis (CRC, Boca Raton, FL, 2012).zbMATHGoogle Scholar
  24. 24.
    A. Cameron and P. Trivedi, Regression Analysis of Count Data (Cambridge Univ. Press, New York, 2013).CrossRefzbMATHGoogle Scholar
  25. 25.
    A. Cameron, P. Trivedi, F. Milne, and J. Piggott, “A microeconometric model of the demand for health care and health insurance in Australia,” Rev. Econ. Stud. 55 (1), 85–106 (1988).CrossRefGoogle Scholar
  26. 26.
    A. Zuur, J. Hilbe, and E. Ieno, A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists (Highland Statistics, 2013).Google Scholar
  27. 27.
    S. Flaherty, G. Patenaude, A. Close, and P. Lurz, “The impact of forest stand structure on red squirrel habitat use,” Forestry 85 (3), 437–444 (2012).CrossRefGoogle Scholar
  28. 28.
    T. Arnold and J. Emerson, “Nonparametric goodness–of–fit tests for discrete null distributions,” R J. 3 (2), 34–39 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of StatisticsKasetsart UniversityBangkokThailand
  2. 2.Department of MathematicsNaresuan UniversityPhitsanulokThailand
  3. 3.Department of Mathematics and StatisticsUniversity of ReginaReginaCanada

Personalised recommendations