Lobachevskii Journal of Mathematics

, Volume 40, Issue 1, pp 14–23 | Cite as

Classification of Second Order Linear Ordinary Differential Equations with Rational Coefficients

  • P. V. BibikovEmail author


In the present work we study linear ordinary differential equations of second order with rational coefficients. Such equations are very important in complex analysis (for example they include the so-called Fuchs equations, which appear in 21 Hilbert’s problem) and in the theory of special functions (Bessel function, Gauss hypergeometric function, etc.). We compute the symmetry group of this class of equations, and it appears that this group includes non-rational (and even nonalgebraic) transformations. Also, the field of differential invariants is described and the effective equivalence criterion is obtained. Finally, we present some examples.

Keywords and phrases

ordinary differential equation linear equation differential invariant jet space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Alekseevskii, A. Vinogradov, and V. Lychagin, Geometry I: Basic Ideas and Concepts of Differential Geometry, Vol. 28 of Encyclopaedia of Math. Sci. (Springer, Berlin, Heidelberg, 1991).CrossRefGoogle Scholar
  2. 2.
    V. Arnold, Geometrical Methods in the Theory Of Ordinary Differential Equations (Springer, Berlin, Heidelberg, 1988).CrossRefGoogle Scholar
  3. 3.
    Yu. Bagderina, “Equivalence of second–order ordinary differential equations to Painlevé equations,” Theor. Math. Phys. 182, 211–230 (2015).CrossRefzbMATHGoogle Scholar
  4. 4.
    P. Bibikov, “On Lie problem and differential invariants of the equations y″ = F(x, y),” Funct. Anal. Appl. 51, 255–262 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Bibikov and V. Lychagin, “GL2(ℂ)–orbits of binary rational forms,” Lobachevskii J. Math. 32, 95–102 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Bibikov and V. Lychagin, “GL3(ℂ)–orbits of rational ternary forms,” Dokl. Math. 438, 295–297 (2011).Google Scholar
  7. 7.
    P. Bibikov and V. Lychagin, “Classification of linear actions of algebraic groups on spaces of homogeneous forms,” Dokl. Math. 442, 732–735 (2012).MathSciNetzbMATHGoogle Scholar
  8. 8.
    P. Bibikov and A. Malakhov, “On Lie problemand differential invariats for the subgroup of the plane Cremona group,” J. Geom. Phys. 121, 72–82 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. Cartan, “Sur les varietéś àconnexion projective,” Bull. Soc. Math. France 52, 205–241 (1924).MathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Dolgachev and V. Iskovskikh, “Finite subgroups of the plane Cremona group,” in Algebra, Arithmetic, and Geometry, Vol. 1: In Honor of Yu. I. Manin, Vol. 269 of Progress in Mathematics (Birkhaüser, Basel, 2006), pp. 443–548.Google Scholar
  11. 11.
    C. Gauss, Disquisitiones generales circa seriem infinitam \(1+\frac{\alpha\beta}{1\cdot\gamma}x+\frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot2\cdot\gamma(\gamma+1)}x^2+etc.\) (Commentationes societatis regiae scientarum Gottingensis recentiore, Gottingen, 1813) [in Latin].Google Scholar
  12. 12.
    A. Grothendieck, “On the de Rham cohomology of algebraic varieties,” Inst. Hautes Etudes Sci. Publ. Math. 29 (29), 95–103 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Harnad, “Picard–Fuchs Equations, Hauptmoduls and Integrable Systems,” in Integrability: The Seiberg–Witten and Witham Equation, Ed. by H. W. Braden and I. M. Krichever (Gordon and Breach, Amsterdam, 2000), Chap. 8, pp. 137–152.Google Scholar
  14. 14.
    B. Kruglikov, “Point classification of second order ODEs: Tresse classification revisited and beyond,” in Proceedings of the 5th Abel Symposium, Tromso, Norway, June 17–22 (Springer, 2008).Google Scholar
  15. 15.
    B. Kriglikov and V. Lychagin, “Global Lie–Tresse theorem,” Sel. Math., New Ser. 22, 1357–1411 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Lie, “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationengestatten. III,” Arch. Math. Naturvid. 8, 371–458 (1883); Gesam. Abh. Bd. 5, 362–427 (1924).zbMATHGoogle Scholar
  17. 17.
    R. Liouville, “Sur les invariants de certaines eqúations differéntielles et sur leurs applications,” J. Ecóle Polytech. 59, 7–76 (1889).zbMATHGoogle Scholar
  18. 18.
    Yu. Manin, “Algebraic curves over fields with differentiation,” Am. Math. Soc. Transl. 2 (37), 59–78 (1964).zbMATHGoogle Scholar
  19. 19.
    P. Olver, Asymptotics and Special Functions (Academic, New York, 1974).zbMATHGoogle Scholar
  20. 20.
    V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New, from Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, Vol. 165 of Cambridge Tracts in Mathematics (Cambridge Univ. Press, Cambridge, 2005).zbMATHGoogle Scholar
  21. 21.
    R. Sharipov, “Effective procedure of point classification for the equations y″ = P + 3Qy′ + 3Ry2 + Sy3”. Accessed 2018.Google Scholar
  22. 22.
    A. Tresse, Détermination des invariants ponctuels de l’ équation différentielle ordinaire du second ordre y = ω(x, y, y) (Leipzig, 1896).zbMATHGoogle Scholar
  23. 23.
    E. Vinberg and V. Popov, Invariant Theory, Vol. 55 of Encyclopaedia ofMathematical Sciences (VINITI, Moscow, 1989) [in Russian].Google Scholar
  24. 24.
    V. Yumaguzhin, “Differential invariants of 2–order ODEs, I”. Accessed 2018.Google Scholar
  25. 25.
    G. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge Univ. Press, Cambridge, 1995).Google Scholar
  26. 26.
    E. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces (Teubner, Leipzig, 1905).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations