Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1362–1366 | Cite as

Hölder Spaces on Closed Curves

  • B. A. KatsEmail author
  • G. Sh. Skvortsova
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev


Let Γ be a closed Jordan curve on the complex plane dividing it onto domains D+ and D, ∞ ∈ D. The Hölder space Hv (Γ) is the space of functions satisfying the Hölder condition with exponent ν on Γ, and \(H^+_\nu(\Gamma),\;H^{-}_\nu(\Gamma)\) are its subspaces consisting of functions analytically extendable into D+ and D relatively. We study intersection and sum of these subspaces for nonsmooth and non-rectifiable curves.

Keywords and phrases

Hölder space non-smooth curves non-rectifiable curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Markushevich, Selected Chapters of Theory of Analytic Functions (Nauka, Moscow, 1976) [in Russian].zbMATHGoogle Scholar
  2. 2.
    I. I. Privalov, Boundary Properties of Analytic Functions (GITTL,Moscow, 1950) [in Russian].Google Scholar
  3. 3.
    F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  4. 4.
    N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1962) [in Russian].zbMATHGoogle Scholar
  5. 5.
    Jian-Ke Lu, Boundary Value Problems for Analytic Functions (World Scientific, Singapore, 1993).zbMATHGoogle Scholar
  6. 6.
    E. M. Dyn’kin, “Smoothness of the Cauchy type integral,” Zap. Nauch. Sem. LOMI AN USSR92, 115–133 (1979).Google Scholar
  7. 7.
    T. Salimov, “Direct estimate for singular Cauchy integral over closed path,” Nauch. Tr. MV SSO Azerb. SSR, No. 5, 59–75 (1979).Google Scholar
  8. 8.
    I. N. Vekua, Generalized Analytical Functions (Moscow, Nauka, 1988) [in Russian].Google Scholar
  9. 9.
    F. W. Gehring, W. K. Hayman, and A. Hinkkanen, “Analytic functions satisfying Hölder conditions on the boundary,” J. Approx. Theory 35, 243–249 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    E. M. Stein, Singular Integrals and Differential Properties of Functions (Princeton Univ. Press, Princeton, 1970).zbMATHGoogle Scholar
  11. 11.
    B. A. Kats, “Riemann problem on a closed Jordan curve,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 68–80 (1983).MathSciNetzbMATHGoogle Scholar
  12. 12.
    K. J. Falconer, Fractal Geometry, 3rd ed. (Wiley, New York, 2014).zbMATHGoogle Scholar
  13. 13.
    E. P. Dolzhenko, “On ‘erazing’ of singularities of analytic functions,” Usp. Mat. Nauk 18, 135–142 (1963).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations