Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1327–1331 | Cite as

On the Nonlinear Schrödinger Equation with a Variable Damping Term

  • Mohamad DarwichEmail author
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev
  • 4 Downloads

Abstract

We consider the L2-critical nonlinear Schrödinger equation with an inhomogeneous damping coefficient a(x). We prove the global existence of the solution in H1(Rd) and we give the minimal time of the blow up for some initial data.

Keywords and phrases

Damped nonlinear Schrödinger equation blow-up global existence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an openmany-body quantum system with localized dissipation,” Phys. Rev. Lett. 110, 35302–35305 (2013).CrossRefGoogle Scholar
  2. 2.
    V. A. Brazhnyi, V. V. Konotop, V. M. Prez-Garcia, and H. Ott, “Dissipation-induced coherent structures in Bose-Einstein condensates,” Phys. Rev. Lett. 102, 144101–144104 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Darwich, “Blowup for the damped L2 critical nonlinear Shrödinger equations,” Adv. Differ. Equat. 17, 337–367 (2012).MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Ohta and G. Todorova, “Remarks on global existence and blowup for damped nonlinear Schrödinger equations,” DiscreteContin. Dyn. Syst. 23, 1313–1325 (2009).zbMATHGoogle Scholar
  5. 5.
    J. P. Dias and M. Figueira, “On the blowup of solutions of a Schrödinger equation with an inhomogeneous damping coefficient,” Commun. Contemp. Math. 16 (3) (2014).Google Scholar
  6. 6.
    S. Correia, “Blowup for the nonlinear Schrödinger equation with an inhomogeneous damping term in the L2-critical case. ” https://doi.org/arxiv.org/pdf/1410.8011.
  7. 7.
    T. Kato, “On nonlinear Schrödinger equations,” Ann. Inst. H. PoincaréPhys. Théor. 46, 113–129 (1987).zbMATHGoogle Scholar
  8. 8.
    T. Cazenave, Semilinear Schrödinger Equations, Vol. 10 of Courant Lecture Notes inMathematics (New York Univ. Courant Inst. Math. Sci., New York, 2003).Google Scholar
  9. 9.
    T. Hmidi and S. Keraani, “Blowup theory for the critical nonlinear Schrödinger equations revisited,” Int. Math. Res. Not. 46, 2815–2828 (2005).CrossRefzbMATHGoogle Scholar
  10. 10.
    H. Nawa, “Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity,” KodaiMath. J. 13, 333–348 (1990).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Mathematics Departement, Lebanese University Faculty of SciencesRafic Hariri University CampusHadathLebanon

Personalised recommendations