Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1428–1436 | Cite as

On n-Weak Cotorsion Modules

  • C. SelvarajEmail author
  • P. Prabakaran
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev
  • 7 Downloads

Abstract

Let R be a ring and n a fixed non-negative integer. In this paper, n-weak cotorsion modules are introduced and studied. A right R-module N is called n-weak cotorsion module if \(Ext^1_R(F,N)=0\) for any right R-module F with weak flat dimension at most n. Also some characterizations of rings with finite super finitely presented dimensions are given.

Keywords and phrases

weak injective module weak flat module n-weak cotorsion module super finitely presented dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Vol. 13 of Graduate Texts in Mathematics (Springer, New York, 1992).CrossRefGoogle Scholar
  2. 2.
    D. L. Costa, “Parameterizing families of non-Noetherian rings,” Comm. Algebra 22, 3997–4011 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    N. Q. Ding, “On envelopes with the unique mapping property,” Comm. Algebra 24, 1459–1470 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. E. Enochs, “Injective and flat covers, envelopes and resolvents,” Israel J. Math. 39, 189–209 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Vol. 30 of de Gruyter Expositions in Mathematics (Walter de Gruyter, Berlin, 2000).CrossRefGoogle Scholar
  6. 6.
    E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, “The existence of Gorenstein flat covers,” Math. Scand. 94, 46–62 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Z. H. Gao, “On n-FI-injective and n-FI-flat modules,” Comm. Algebra 40, 2757–2770 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Z. H. Gao and F. G. Wang, “All Gorenstein hereditary rings are coherent,” J. Algebra Appl. 13, 135–140 (2014).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Z. H. Gao and F. G. Wang, “Weak injective and weak flat modules,” Comm. Algebra 43, 3857–3868 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Z. H. Gao and Z. Y. Huang, “Weak injective covers and dimension of modules,” Acta Math. Hungar. 147, 135–157 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N. Mahdou, “On Costas conjecture,” Comm. Algebra 29, 2775–2785 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. X. Mao and N. Q. Ding, “Envelopes and covers by modules of finite FP-injective and flat dimensions,” Comm. Algebra 35, 833–849 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. J. Rotman, An Introduction to Homological Algebra (Academic, New York, 1979).zbMATHGoogle Scholar
  14. 14.
    B. Stenström, “Coherent rings and FP-injective modules,” J. London Math. Soc. 2, 323–329 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Trlifaj, in Covers, Envelopes, and Cotorsion Theories, Proceedings of the Workshop on Homological Methods in Module Theory, Cortona, Sept. 10–16, 2000.Google Scholar
  16. 16.
    J. Xu, Flat Covers of Modules, Lect. NotesMath. 1634, 1 (1996).CrossRefGoogle Scholar
  17. 17.
    T. Zhao, “Homological properties of modules with finite weak injective and weak flat dimensions,” Bull. Malays. Math. Sci. Soc. 41, 779–805 (2018).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsPeriyar UniversitySalemIndia

Personalised recommendations