Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1315–1319 | Cite as

On k-Connected Γ-Extensions of Binary Matroids

  • Y. M. BorseEmail author
  • Ganesh Mundhe
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev


Slater introduced the point-addition operation on graphs to classify 4-connected graphs. The Γ-extension operation on binary matroids is a generalization of the point-addition operation. In this paper, we obtain necessary and sufficient conditions to preserve k-connectedness of a binary matroid under the Γ-extension operation. We also obtain a necessary and sufficient condition to get a connected matroid from a disconnected binary matroid using the Γ-extension operation.

Keywords and phrases

binary matroid splitting k-connected Γ-extension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Azanchiler, “Γ-extension of binary matroids,” ISRN Discrete Math. 2011, 629707 (2011).CrossRefzbMATHGoogle Scholar
  2. 2.
    H. Azanchiler, “On extension of graphic matroids,” Lobachevskii J. Math. 36, 38–47 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Y. M. Borse, “A note on n-connected splitting-off matroids,” Ars Combin. 128, 279–286 (2016).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Y. M. Borse and S. B. Dhotre, “On connected splitting matroids,” Southeast Asian Bull. Math. 36, 17–21 (2012).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Y. M. Borse and G. Mundhe, “On n-connected splitting matroids,” AKCE Int. J. Graphs Comb. (2017). doi 10.1016/j. akcej. 2017. 12. 001Google Scholar
  6. 6.
    Y. M. Borse and G. Mundhe, “Graphic and cographic Γ-extensions of binary matroids,” Discuss. Math. Graph Theory 38, 889–898 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    H. Fleischner, Eulerian Graphs and Related Topics Part 1 (North Holland, Amsterdam, 1990), Vol. 1.zbMATHGoogle Scholar
  8. 8.
    P. P. Malavadkar, M. M. Shikare, and S. B. Dhotre, “A characterization of n-connected splitting matroids,” Asian-European J. Combin. 7, 14500600 (2014).MathSciNetzbMATHGoogle Scholar
  9. 9.
    J. G. Oxley, Matroid Theory (Oxford Univ. Press, Oxford, 1992).zbMATHGoogle Scholar
  10. 10.
    T. T. Raghunathan, M. M. Shikare, and B. N. Waphare, “Splitting in a binary matroid,” DiscreteMath. 184, 267–271 (1998).MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. M. Shikare, G. Azadi, and B. N. Waphare, “Generalized splitting operation for binary matroids and its applications,” J. IndianMath. Soc. New Ser. 78, 145–154 (2011).MathSciNetzbMATHGoogle Scholar
  12. 12.
    P. J. Slater, “A Classification of 4-connected graphs,” J. Combin. Theory, Ser. B 17, 281–298 (1974).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsSavitribai Phule Pune UniversityPuneIndia
  2. 2.Army Institute of TechnologyPuneIndia

Personalised recommendations