Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1239–1250 | Cite as

High Performance Computing in Multiscale Problems of Gas Dynamics

  • S. V. Polyakov
  • V. O. Podryga
  • D. V. Puzyrkov
Part 1. Special issue “High Performance Data Intensive Computing” Editors: V. V. Voevodin, A. S. Simonov, and A. V. Lapin
  • 5 Downloads

Abstract

The work is devoted to the organization of high performance computing in the solution of multiscale problems of gas dynamics relevant for the implementation of modern nanotechnologies. The base of the presented computing technology is a multiscale two-level approach that combines calculations at macro- and microlevels. The approach makes it possible to study micro- and nanoflows of a gaseous medium under conditions of complex geometry of technical systems used in the production cycle in order to obtain new nanomaterials and nanocoatings. Within the framework of the approach a system of the quasigasdynamic (QGD) equations and a system of the molecular dynamics (MD) equations are considered as two basic mathematical models. These models are aggregated using the method of splitting by physical processes and scales. The QGD system is solved by the finite volume method on grids of arbitrary type. The MD equations are solved according to the Verlet integration. In view of the complexity of the problem a high performance computing is used for realization of the approach. Parallel implementation of the approach is based on the methods of domain decomposition and functional parallelism and is oriented towards the use of computer systems with hybrid architecture. The implementation uses MPI, OpenMP and CUDA technologies. Testing of the developed approach and parallel tool was performed using the example of the problem of spraying the nanoparticles on a substrate. Numerical experiments confirm the effectiveness of the developed computing technology.

Keywords and phrases

multiscale simulation of nonlinear processes in gas medium parallel algorithms and software high performance computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).zbMATHGoogle Scholar
  2. 2.
    J. E. Lennard–Jones, “Cohesion,” Proc. Phys. Soc. 43, 461–482 (1931).CrossRefzbMATHGoogle Scholar
  3. 3.
    L. Verlet, “Computer’ experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (1967).CrossRefGoogle Scholar
  4. 4.
    J. M. Haile, Molecular Dynamics Simulations. Elementary Methods (Wiley, New York, 1992).Google Scholar
  5. 5.
    D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithm to Applications (Academic, New York, 2002).zbMATHGoogle Scholar
  6. 6.
    D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004).CrossRefzbMATHGoogle Scholar
  7. 7.
    G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 5, 305–333 (2013).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. O. Podryga, “Multiscale approach to computation of three-dimensional gas mixture flows in engineering microchannels,” Dokl. Math. 94, 458–460 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. O. Podryga and S. V. Polyakov, “Parallel implementation of multiscale approach to the numerical study of gas microflows,” Vychisl. Metody Programm. 17, 147–165 (2016).Google Scholar
  10. 10.
    T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Berlin, Heidelberg, 2009).CrossRefzbMATHGoogle Scholar
  11. 11.
    Yu. V. Sheretov, Dynamics of ContinuousMedia with Space-Time Averaging (Regular. Khaot. Dinamika, Izhevsk, 2009) [in Russian].Google Scholar
  12. 12.
    T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary mixtures of gases,” Dokl. Math. 90 (3), 1–5 (2014).CrossRefzbMATHGoogle Scholar
  13. 13.
    L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: FluidMechanics (Nauka,Moscow, 1986; Pergamon, London, 1959).Google Scholar
  15. 15.
    L. G. Loitsyansky, Mechanics of Liquid and Gas (Nauka, Moscow, 1987) [in Russian].Google Scholar
  16. 16.
    M. N. Kogan, Rarefied Gas Dynamics (Plenum, New York, 1969).CrossRefGoogle Scholar
  17. 17.
    E. M. Shakhov, Method for Investigation of Rarefied GasMotion (Nauka, Moscow, 1974) [in Russian].Google Scholar
  18. 18.
    Yu. A. Koshmarov and Yu. A. Ryzhov, AppliedDynamics of Rarefied Gas (Mashinostroenie,Moscow, 1977) [in Russian].Google Scholar
  19. 19.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Springer, New York, 1988).CrossRefzbMATHGoogle Scholar
  20. 20.
    G. Bird, Molecular Gas Dynamics (Mir,Moscow, 1981; Clarendon, Oxford, 1994).Google Scholar
  21. 21.
    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation ofGas Flows (Clarendon, Oxford, 1994).Google Scholar
  22. 22.
    V. V. Vedenyapin, Boltzmann and Vlasov Kinetic Equations (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  23. 23.
    F. M. Sharipov and V. D. Seleznev, Flows of Rarefied Gases in Channels and Microchannels (Inst. Teplofiz. RAN, Ekaterinburg, 2008) [in Russian].Google Scholar
  24. 24.
    Ch. J. Roy, M. A. Gallis, T. J. Bartel, and L. P. Jeffrey, “Navier–Stokes and direct simulation Monte Carlo predictions for laminar hypersonic separation,” AIAA J. 41, 1055–1063 (2003).CrossRefGoogle Scholar
  25. 25.
    V. V. Zakharov, A. V. Rodionov, G. A. Lukyanov, and J. F. Crifo, “Navier–Stokes and direct Monte Carlo simulations of the circumnuclear gas coma: III. Spherical, inhomogeneous sources,” Icarus 194, 327–346 (2008).CrossRefGoogle Scholar
  26. 26.
    Zh.-H. Li, Zh.-H. Li, J.-L. Wu, and Ao-P. Peng, “Coupled Navier–Stokes/direct simulation Monte Carlo simulation of multicomponent mixture plume flows,” J. Propuls. Power 30, 672–689 (2014).CrossRefGoogle Scholar
  27. 27.
    J. Geiser, “Splitting approach to coupled Navier–Stokes and molecular dynamics equations,” J. Comput. Modell. 2 (2), 1–33 (2012).Google Scholar
  28. 28.
    A. H. M. Isfahani, I. Tasdighi, A. Karimipour, E. Shirani, and M. Afrand, “A joint lattice Boltzmann and molecular dynamics investigation for thermohydraulical simulation of nano flows through porous media,” Eur. J. Mech. B: Fluids 55 (2), 15–23 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    R. Eymard, T. R. Gallouet, and R. Herbin, “The finite volume method,” in Handbook ofNumerical Analysis, Ed. by P. G. Ciarlet and J. L. Lions (North Holland, Amsterdam, 2000), Vol. 7, pp. 713–1020.Google Scholar
  30. 30.
    R. Li, Zh. Chen, and W. Wu, Generalized Difference Methods for Differential Equations. Numerical Analysis of Finite Volume Methods (Marcel Dekker, New York, 2000).CrossRefzbMATHGoogle Scholar
  31. 31.
    I. V. Popov and I. V. Friazinov, Method of Adaptive Artificial Viscosity of the Numerical Solution of the Gas Dynamics Equations (KRASAND,Moscow, 2015) [in Russian].Google Scholar
  32. 32.
    W. Gautschi, Numerical Analysis, 2nd ed. (Springer, Birkhauser, New York, 2012).CrossRefzbMATHGoogle Scholar
  33. 33.
    V. O. Podryga, “Molecular dynamics method for simulation of thermodynamic equilibrium,” Math. Models Comput. Simul. 3, 381–388 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer molecular modeling of thermodynamic equilibrium in gas-metal microsystems,” Vychisl. Metody Programm. 16, 123–138 (2015).Google Scholar
  35. 35.
    T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Simulation of gas mixture flows in microchannels,” Vestn. RUDN, Ser.: Mat. Inform. Fiz. 3, 154–163 (2014).Google Scholar
  36. 36.
    Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale simulation of nonlinear processes in technical microsystems,” Mat. Model. 27 (7), 65–74 (2015).MathSciNetzbMATHGoogle Scholar
  37. 37.
    V. O. Podryga and S. V. Polyakov, “Multiscale modeling of gas jet outflow to vacuum,” KIAM Preprint No. 81 (Keldysh Inst. Appl. Math., Moscow, 2016).Google Scholar
  38. 38.
    M. A. Kornilina, V. O. Podryga, S. V. Polyakov, D. V. Puzyrkov, and M. V. Yakoboskiy, “Cloud service for solution of promising problems of nanotechnology,” Supercomput. Front. Innov. 4 (4), 66–79 (2017).Google Scholar
  39. 39.
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117 (1), 1–19 (1995).CrossRefzbMATHGoogle Scholar
  40. 40.
    J. C. Phillips et al, “Scalable molecular dynamics with NAMD,” J. Comput. Chem. 26, 1781–1802 (2005).CrossRefGoogle Scholar
  41. 41.
    H. M. Aktulga, J. C. Fogarty, S. A. Pandit, and A. Y. Grama, “Parallel reactive molecular dynamics: numerical methods and algorithmic techniques,” Paper 18 (PRISM: NNSA Center for Prediction of Reliability, Integrity and Survivability ofMicrosystems, 2009).Google Scholar
  42. 42.
    M. Bisson, M. Bernaschi, and S. Melchionna, “Parallel molecular dynamics with irregular domain decomposition,” Commun. Comput. Phys. 10, 1071–1088 (2011).CrossRefzbMATHGoogle Scholar
  43. 43.
    W. M. Brown et al., “Implementing molecular dynamics on hybrid high performance computers-short range forces,” Comput. Phys. Commun. 182, 898–911 (2011).CrossRefzbMATHGoogle Scholar
  44. 44.
    I. V. Morozov, A. M. Kazennov, R. G. Bystryi, G. E. Norman, V. V. Pisarev, and V. V. Stegailov, “Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs,” Comput. Phys. Commun. 182, 1974–1978 (2011).CrossRefGoogle Scholar
  45. 45.
    S. J. Pennycook et al., “Exploring SIMD for molecular dynamics, using Intel Xeon processors and Intel Xeon Phi coprocessors,” in Proceedings of the 27th International Symposium on Parallel and Distributed Processing (IPDPS 2013), Boston, MA, May 20–24, 2013, pp. 1085–1097.Google Scholar
  46. 46.
    W. M. Brown and M. Yamada, “Implementing molecular dynamics on hybrid high performance computersthree-body potentials,” Comput. Phys. Commun. 184, 2785–2793 (2013).CrossRefGoogle Scholar
  47. 47.
    C. Begau and G. Sutmann, “Adaptive dynamic load-balancing with irregular domain decomposition for particle simulations,” Comput. Phys. Commun. 190, 51–61 (2015).CrossRefGoogle Scholar
  48. 48.
    G. S. Smirnov and V. V. Stegailov, “Efficiency of classical molecular dynamics algorithms on supercomputers,” Math. Models Comput. Simul. 8, 734–743 (2016).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Polyakov
    • 1
    • 2
    • 3
  • V. O. Podryga
    • 1
    • 4
  • D. V. Puzyrkov
    • 1
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  4. 4.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations