Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1228–1238 | Cite as

Domain-Decomposition Parallelization for Molecular Dynamics Algorithm with Short-Ranged Potentials on Epiphany Architecture

  • V. Nikolskii
  • V. Stegailov
Part 1. Special issue “High Performance Data Intensive Computing” Editors: V. V. Voevodin, A. S. Simonov, and A. V. Lapin
  • 6 Downloads

Abstract

Many-core processor architecture is a promising paradigm for the development of modern supercomputers. In this paper, we consider the parallel implementation of the generic molecular dynamics algorithm for the many-core Epiphany architecture. This architecture implements a new type of many-core processor composed of 16 simple cores connected by a network on chip with mesh topology. New approaches to parallel programming are required to deploy this processor. We use LAMMPS running on one 64-bit ARMv8 Cortex-A53 CPU core for comparing the accuracy of the results of the presented variant of the molecular dynamics algorithm for Epiphany and its computational efficiency.

Keywords and phrases

atomistic modelling Lennard-Jones potential OpenSHMEM Epiphany optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D. Donofrio, S. D. Hammond, K. S. Hemmert, and S. M. Kelly, “Abstract machine models and proxy architectures for exascale computing,” in Proceedings of the 2014 Hardware-Software Co-Design for High Performance Computing (2014), pp. 25–32.CrossRefGoogle Scholar
  2. 2.
    W. D. Gropp, “MPI + X for extreme scale computing,” in Proceedings of the 12th International Conference on Parallel Processing and Applied Mathematics (2017).Google Scholar
  3. 3.
    B. Glinsky, I. Kulikov, I. Chernykh, D. Weins, A. Snytnikov, V. Nenashev, A. Andreev, V. Egunov, and E. Kharkov, “The co-design of astrophysical code for massively parallel supercomputers,” in Algorithms and Architectures for Parallel Processing, Ed. by J. Carretero et al. (Springer International, Cham, 2016), pp. 342–353.CrossRefGoogle Scholar
  4. 4.
    D. D. Pruitt and E. A. Freudenthal, “Preliminary investigation of mobile system features potentially relevant toHPC,” in Proceedings of the 4th InternationalWorkshop on Energy Efficient Supercomputing (IEEE, Piscataway, NJ, USA, 2016).Google Scholar
  5. 5.
    F. Mantovani and E. Calore, “Performance and power analysis of HPC workloads on heterogeneous multinode clusters,” J. Low Power Electron. Appl. 8 (2), 1–14 (2018).CrossRefGoogle Scholar
  6. 6.
    Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović, “Exploring the tradeoffs between programmability and efficiency in data-parallel accelerators,” SIGARCH Comput. Archit. New. 39, 129 (2011).CrossRefGoogle Scholar
  7. 7.
    U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A survey of performance modeling and simulation techniques for accelerator-based computing,” IEEE Trans. Parallel Distrib. Syst. 26, 272 (2015).CrossRefGoogle Scholar
  8. 8.
    Q. Wu, C. Yang, T. Tang, and L. Xiao, “MIC acceleration of short-range molecular dynamics simulations,” in Proceedings of the 1st International Workshop on Code OptimiSation for Multi and Many Cores (ACM, New York, NY, USA, 2013).Google Scholar
  9. 9.
    M. Tasende, “Generation of the single precision BLAS Library for the Parallella platform, with Epiphany coprocessor acceleration, using the BLIS framework,” in Proceedings of the 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, and 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech) (2016), pp. 894–897.Google Scholar
  10. 10.
    J. A. Ross, D. A. Richie, S. J. Park, and D. R. Shires, “Parallel programming model for the Epiphany manycore coprocessor using threaded MPI,” Microprocess. Microsyst. 43, 95 (2016).CrossRefGoogle Scholar
  11. 11.
    S. N. Agathos, A. Papadogiannakis, and V. V. Dimakopoulos, “Targeting the Parallella,” in Euro-Par 2015: Parallel Processing, Proceedings of the 21st International Conference on Parallel and Distributed Computing, Vienna, Austria, August 24–28, 2015, Ed. by J. L. Träff, S. Hunold, and F. Versaci (Springer, Berlin, Heidelberg, 2015), pp. 662–674.Google Scholar
  12. 12.
    A. Sukhinov and G. Ostrobrod, “Efficient face detection on Epiphany multicore processor,” in Parallel Computational Technologies (PCT’2014), Vestn. YuUr Univ., Ser. Vychisl. Mat. Inform. 3, 5–19 (2014),.Google Scholar
  13. 13.
    A. Sukhinov and G. Ostrobrod, “Efficient face detection on Epiphany multicore processor,” Comput. Math. Inform. Technol. 1, 113 (2017).CrossRefGoogle Scholar
  14. 14.
    S. Raase and T. Nordström, “On the use of a many-core processor for computational fluid dynamics simulations,” Proc. Comput. Sci. 51, 1403 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kickstarting high-performance energy-efficient manycore architectures with Epiphany,” in Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, 2014.Google Scholar
  16. 16.
    A. Olofsson, R. Trogan, and O. Raikhman, “A 1024-core 70 GFLOP/W floating point manycore microprocessor,” in Proceedings of the 15th Annual Workshop on High Performance Embedded Computing, 2011.Google Scholar
  17. 17.
    T. Vocke, “An evaluation of the Adapteva Epiphany Many-core architecture,” Master’s Thesis (Univ. of Twente/Thales, 2015).Google Scholar
  18. 18.
    J. A. Ross and D. A. Richie, “Implementing OpenSHMEM for the Adapteva Epiphany RISC array processor,” Proc. Comput. Sci. 80, 2353 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Ross and D. Richie, “An OpenSHMEM implementation for the Adapteva Epiphany coprocessor,” in OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hybrid Environments, Ed. by M. Gorentla Venkata, N. Imam, S. Pophale, and T. M. Mintz (Springer International, Cham, 2016), pp. 146–159.CrossRefGoogle Scholar
  20. 20.
    M. López-Marcos, J. Sanz-Serna, and J. Diáz, “Are Gauss-Legendre methods useful in molecular dynamics?,” J. Comput. Appl. Math. 67, 173 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. A. López-Marcos, J. M. Sanz-Serna, and R. D. Skeel, “Explicit symplectic integrators using Hessianvector products,” SIAM J. Sci. Comput. 18, 223 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comp. Phys. 117, 1 (1995).CrossRefzbMATHGoogle Scholar
  23. 23.
    G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 5, 305 (2013).MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Stoddard and J. Ford, “Numerical experiments on the stochastic behavior of a Lennard–Jones gas system,” Phys. Rev. A 8, 1504 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations