Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1159–1169 | Cite as

FlowVision Scalability on Supercomputers with Angara Interconnect

  • V. S. AkimovEmail author
  • D. P. Silaev
  • A. A. Aksenov
  • S. V. Zhluktov
  • D. V. Savitskiy
  • A. S. Simonov
Part 1. Special issue “High Performance Data Intensive Computing” Editors: V. V. Voevodin, A. S. Simonov, and A. V. Lapin

Abstract

Scalability of computations in the FlowVision CFD software on the Angara-C1 cluster equipped with the Angara interconnect is studied. Different test problems with 260 thousand, 5.5 million and 26.8 million computational cells are considered. Computations in FlowVision are performed using a new solver of linear systems based on the algebraic multigrid (AMG) method. It is shown that the the special FlowVision’s Dynamic balancing technology significantly improves performance of computations if features of the problem lead to the non-uniform loading of CPUs. The Angara-C1 cluster demonstrates excellent performance and scalability characteristics comparable with its analogues based on the 4X FDR Infiniband interconnect.

Keywords and phrases

scalability FlowVision CFD gas dynamics cluster supercomputer interconnect Angara 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Stegailov, N. D. Orekhov, and G. S. Smirnov, “HPC hardware efficiency for quantum and classical molecular dynamics,” in Proceedings of the International Conference on Parallel Computing Technologies (Springer, Cham, 2015), pp. 469–473.CrossRefGoogle Scholar
  2. 2.
    G. S. Smirnov and V. V. Stegailov, “Efficiency of classical molecular dynamics algorithms on supercomputers,” Math. Models Comput. Simul. 8, 734–743 (2016).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Derradji, “The BXI interconnect architecture,” HPC hardware efficiency for quantum and classicalmolecular dynamics,” in Proceedings of the 23rd Annual Symposium on High-Performance Interconnects HOTI (IEEE, Santa Clara, CA, 2015).Google Scholar
  4. 4.
    H. Fröning, “The on achieving high message rates,” in Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, Delft, The Netherlands (IEEE, 2013).Google Scholar
  5. 5.
    A. S. Simonov, D. V. Makagon, I. A. Zhabin, A. N. Shcherbak, E. L. Syromyatnikov, and D. A. Polyakov, “The first generation of high-speed Angara interconnect,” Naukoemk. Tekhnol. 15 (1), 21–28 (2014).Google Scholar
  6. 6.
    A. I. Slutskin, A. S. Simonov, I. A. Zhabin, D. V. Makagon, and E. L. Syromyatnikov, “Development of the ES8430 Angara interconnect for future Russian supercomputers,” Usp. Sovrem. Radioelektron. 1, 6–10 (2012).Google Scholar
  7. 7.
    V. Stegailov et al., “Early performance evaluation of the hybrid cluster with Torus interconnect aimed at molecular-dynamics simulations,” Lect. NotesComput. Sci. 10777, 327–336 (2018).CrossRefGoogle Scholar
  8. 8.
    A. A. Agarkov, T. F. Ismagilov, D. V. Makagon, A. S. Semenov, and A. S. Simonov, “Evaluation testing results of the domestic high-speed Angara interconnect,” in Proceedings of the International Conference on Supercomputer Days in Russia, Moscow, Sept. 26–27, 2016 (Mosk. Gos. Univ., Moscow, 2016), pp. 626–639.Google Scholar
  9. 9.
    FlowVision—User’s Guide of version 3. 09. 05, Official site FlowVision CFD. https://doi.org/flowvision.ru/webhelp/fven_30905/. Accessed 2017.
  10. 10.
    G. B. Sushko and S. A. Kharchenko, “Experimental research on Chebyshev SKIF MSU of combined MPI+threads implementation of the algorithm for solving systems of linear equations arising in FlowVision during the simulation of computational hydrodynamics problems,” in Proceedings of the International Conference on Parallel Computational Technologies PaVT’2009, Nizh. Novgorod, March 30–Apr. 3, 2009 (Yuzh. Ural. Gos. Univ., Chelyabinsk, 2009), pp. 316–324.Google Scholar
  11. 11.
    M. J. de C. Henshaw, “M219 cavity case,” in Verification and Validation Data for Computational Unsteady Aerodynamics, Tech. Rep. RTO-TR-26, AC/323(AVT)TP/19 (QinetiQ, UK, 2002), pp. 453–472.Google Scholar
  12. 12.
    Yu. V. Fisher and A. E. Schelyaev, “Verification of calculated characteristics of supersonic turbulent jets,” Comput. Res. Modeling 9 (1), 21–35 (2017).CrossRefGoogle Scholar
  13. 13.
    D. C. Wilcox, Turbulence Modeling for CFD (DCW Industries, 1994).Google Scholar
  14. 14.
    S. V. Zhluktov and A. A. Aksenov, “Wall functions for high-reynolds calculations in FlowVision software,” Comput. Res. Modeling 7, 1221–1239 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Akimov
    • 1
    Email author
  • D. P. Silaev
    • 1
  • A. A. Aksenov
    • 2
  • S. V. Zhluktov
    • 2
  • D. V. Savitskiy
    • 2
  • A. S. Simonov
    • 3
  1. 1.Numerical Engineering Platform LLCSkolkovo Innovation CenterMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Scientific and Research Centre of Electronic Computer TechnologyMoscowRussia

Personalised recommendations