Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 7, pp 992–996 | Cite as

Symmetric Blind Information Reconciliation and Hash-function-based Verification for Quantum Key Distribution

  • A. K. Fedorov
  • E. O. Kiktenko
  • A. S. Trushechkin
Article

Abstract

We consider an information reconciliation protocol for quantum key distribution (QKD). In order to correct down the error rate, we suggest a method, which is based on symmetric blind information reconciliation for the low-density parity-check (LDPC) codes. We develop a subsequent verification protocol with the use of ϵ-universal hash functions, which allows verifying the identity between the keys with a certain probability.

Keywords and phrases

Information reconciliation universal hashing quantum key distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Schneier, Applied Cryptography (Wiley, New York, 1996).zbMATHGoogle Scholar
  2. 2.
    R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120–126 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Inform. Theor. 22, 644–654 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” J. Am. Inst. Electr. Eng. 45, 295–301 (1926).CrossRefGoogle Scholar
  6. 6.
    C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. A. Kotel’nikov, Classified Report (1941); S. N. Molotkov, “Quantum cryptography and V. A. Kotel’nikov’s one-time key and sampling theorems,” Phys. Usp. 49, 750 (2006).CrossRefGoogle Scholar
  8. 8.
    M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and set equality,” J. Comput. Syst. Sci. 22, 265–279 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).CrossRefzbMATHGoogle Scholar
  10. 10.
    E. Diamanti, H.-K. Lo, and Z. Yuan, “Practical challenges in quantum key distribution,” Quant. Inf. 2, 16025 (2016).CrossRefGoogle Scholar
  11. 11.
    E. O. Kiktenko, A. S. Trushechkin, Y. V. Kurochkin, and A. K. Fedorov, “Post-processing procedure for industrial quantum key distribution systems,” J. Phys.: Conf. Ser. 741, 012081 (2016).Google Scholar
  12. 12.
    E. O. Kiktenko, A. S. Trushechkin, C. C.W. Lim, Y. V. Kurochkin, and A. K. Fedorov, “Symmetric blind information reconciliation for quantum key distribution,” Phys. Rev. Appl. 8, 044017 (2017).CrossRefGoogle Scholar
  13. 13.
    E. O. Kiktenko, M. N. Anufriev, N. O. Pozhar, and A. K. Fedorov, “Symmetric information reconciliation for the QKD post-processing procedure,” Zenodo (2016). https://doi.org/zenodo.org/record/164953. Google Scholar
  14. 14.
    E. O. Kiktenko, A. S. Trushechkin, M. N. Anufriev, N. O. Pozhar, and A. K. Fedorov, “Post-processing procedure for quantum key distribution systems,” Zenodo (2016). https://doi.org/zenodo.org/record/200365 Google Scholar
  15. 15.
    R. G. Gallager, “Low density parity check codes,” IRE Trans. Inf. Theory 8, 21–28 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45, 399–431 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Martínez-Mateo, D. Elkouss, and V. Martin, “Improved construction of irregular progressive edge-growth tanner graphs,” IEEE Comm. Lett. 14, 1155–1157 (2010).CrossRefGoogle Scholar
  18. 18.
    D. Elkouss, A. Leverrier, R. Alleaume, and J. J. Boutros, “Efficient reconciliation protocol for discretevariable quantum key distribution,” in Proceedings of the IEEE International Symposiumon Information Theory, 2009, pp. 1879–1883.Google Scholar
  19. 19.
    D. Elkouss, J. Martínez-Mateo, and V. Martin, “Untainted puncturing for irregular low-density parity-check codes,” IEEE Wireless Comm. Lett. 1, 585–588 (2012).CrossRefGoogle Scholar
  20. 20.
    T. Krovetz and P. Rogaway, “Fast universal hashing with small keys and no preprocessing: the PolyR construction,” Lect. Notes Comput. Sci. 2015, 73–89 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing”, New J. Phys. 16, 013047 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. K. Fedorov
    • 1
  • E. O. Kiktenko
    • 1
    • 2
    • 3
    • 4
  • A. S. Trushechkin
    • 1
    • 2
    • 5
    • 6
  1. 1.Russian Quantum Center, Business-center “Ural”Skolkovo, MoscowRussia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  3. 3.Geoelectromagnetic Research Centre, Schmidt Institute of Physics of the EarthRussian Academy of SciencesTroitsk, MoscowRussia
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia
  5. 5.National Research Nuclear University MEPhIMoscowRussia
  6. 6.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations