Skip to main content
Log in

Parallel Algorithms for Astrophysics Problems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The algorithm and the mathematical modeling package for 3-D gravitational gasdynamics problems with ultra-high resolution meshes are described. The modeling results of filamentary formations, i.e. concentrated areas with high gas density in molecular clouds (MC), and the nonisothermic compression calculation data are discussed. The spatial mesh resolution required for satisfying Jeans conditions in modeling is substantiated. The programming code developed uses dynamic gridding called local adaptive mesh refinement (AMR) at several (up to 10) resolution levels. To provide adequate resolution themeshes are added automatically and dynamically as well as destroyed as needed. The computation paralleling algorithm withOpenMPand CUDA is given. The programming language chosen to compute the problems of gravitational gas dynamics efficiently is justified and substantiated. The practice of applying algorithms for modeling the MC fragmentation after collisions, the filament and protostellar clouds formation, the star formation stages is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. Andre, A. Menshchikov, S. Bontemps, et al., “From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Hersche lGould Belt Survey,” Astron. Astrophys. L102, 518–523 (2010). doi:10.1051/0004-6361/201014666

    Google Scholar 

  2. R. Klein, C. McKee, and P. Colella, “On the hydrodynamics interaction of shock waves with interstellar clouds. 1. Nonradiative shocks in small clouds,” Astrophys. J. 420, 213–236 (1994).

    Article  Google Scholar 

  3. J. M. Pittard, S. A. E. G. Falle, T. W. Hartquist, and J. E. Dyson, “The turbulent destruction of clouds,” Mon. Not. R. Astron. Soc. 394, 1351–1378 (2009).

    Article  Google Scholar 

  4. E. J. Tasker, R. Brunino, N. L. Mitchell, D. Michielsen, S. Hopton, F. R. Pearce, G. L. Bryan, and T. Theuns, “A test suite for quantitative comparison of hydrodynamics codes in astrophysics,” Mon. Not. R. Astron. Soc. (2008).

    Google Scholar 

  5. T. Matsumoto, “Self-gravitational magnetohydrodynamics with adaptive mesh refinement for protostellar collapse,” Publ. Astron. Soc. Jpn. 59 (2007).

  6. B. Rybakin and V. Goryachev, “The supersonic shock wave interaction with low-density gas bubble,” Acta Astronaut. 94, 749–753 (2014).

    Article  Google Scholar 

  7. B. P. Rybakin, V. B. Betelin, V. R. Dushin, E. V. Mikhalchenko, S. G. Moiseenko, L. I. Stamov, and V. V. Tyurenkova, “Model of turbulent destruction of molecular clouds,” Acta Astronaut. 119, 131–136 (2016).

    Article  Google Scholar 

  8. J. K. Truelove, R. I. Klein, C. F. McKee, J. H. Holliman, L. H. Howell, J. A. Greenough, and D. T. Woods, “Self-gravitational hydrodynamics with 3-D adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation,” Astrophys. J. 495, 821–835 (1998).

    Article  Google Scholar 

  9. A. A. Samarskiy and Yu. P. Popov, Differential Solving Methods of Gas Dynamics Problems (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. M. S. Frantsuzov and V. V. Kuzenov, “Modification of flux correctionmethod for gas dynamics problems,” in Physicochemical Kinetics in Gas Dynamics (2008) [in Russian].

    Google Scholar 

  11. R. I. Klein, “Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds,” J. Comput. Appl.Math. 109, 123–152 (1999).

    Article  MATH  Google Scholar 

  12. D. S. Balsara and C. D. Norton, “Highly parallel structure adaptive mesh refinement using parallel languagebased approaches,” Parallel Comput., No. 27, 37–70 (2001).

    Article  MATH  Google Scholar 

  13. P. Colella and H.M. Glaz, J. Comput. Phys. 59, 264–277 (1985).

    Article  MathSciNet  Google Scholar 

  14. E. Loh, “The ideal HPC programming language,” Program. Languages 8 (6) (2010).

    Google Scholar 

  15. B. P. Rybakin, “Modeling of III-D problems of gas dynamics on multiprocessing computers and GPU,” Comput. Fluids 80, 403–407 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. F. Lugovoi, P. Z. Meish, B. P. Rybakin, and G. V. Secrieru, “Numerical simulation of the dynamics of a reinforced shell subject to nonstationary load,” Int. Appl.Mech. 44, 788–793 (2013).

    Article  Google Scholar 

  17. M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations,” J. Comput. Phys. 53, 484–512 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. R. Woodward and P. Colella, “The numerical simulation of two dimensional fluid flow with strong shocks,” J. Comput. Phys. 54, 115–173 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. M. Stone and M. L. Norman, “ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I. The hydrodynamic algorithms and tests,” Astrophys. J. Suppl. Ser. 80, 753–790 (1992).

    Article  Google Scholar 

  20. B. P. Rybakin, “Parallel realization of 3D Poissone equation solutions on structured adaptive grids for supernova explosion modeling,” in Technologies of Parallel Programming, Proceedings of the Conference, Abrau-Dyurso, Sept. 18–23, 2007, pp. 87–89.

  21. B. P. Rybakin, “Parallel 3DTP scheme for solving gravitation gas dynamics problems,” in Proceedings of the Conference on Parallel Computing Technologies, Nizhny Novgorod, March 30–Apr. 3, 2009, pp. 673–679.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rybakin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakin, B., Goryachev, V. Parallel Algorithms for Astrophysics Problems. Lobachevskii J Math 39, 562–570 (2018). https://doi.org/10.1134/S199508021804011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508021804011X

Keywords and phrases

Navigation