Lobachevskii Journal of Mathematics

, Volume 39, Issue 3, pp 340–347 | Cite as

Choquet Order and Jordan Maps

Article

Keywords

Choquet order orthogonalmeasures C*-dynamical systems invariant states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Brateli and D. W. Robinson, Operator Algebras and Quantum StatisticalMechanics (Springer, Berlin, 1997), Vol.1.Google Scholar
  2. 2.
    K. Davidson and M. Kennedy, “Choquet order and hyperrigidity for function systems,” arXiv:1608.02334v1, 8 August 2016.Google Scholar
  3. 3.
    H. Halvorson, Deep Beauty: Understanding the Quantum World through Mathematical Innovation (Cambridge Univ. Press, Cambridge, 2011).CrossRefMATHGoogle Scholar
  4. 4.
    J. Hamhalter, “Isomorphisms of ordered structures of abelian C*-subalgebras of C*-subalgebras,” J.Math. Anal. Appl. 383, 391–399 (2011).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. Hamhalter and E. Turilova, “Structure of associative subalgebras of Jordan operator algebras,” Quart. J. Math. 64, 397–408 (2013).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J. Hamhalter and E. Turilova, “Automorphisms of ordered structures of abelian parts of operator algebras and their role in quantum theory,” Int. J. Theor. Phys. 53, 3333–3345 (2014).CrossRefMATHGoogle Scholar
  7. 7.
    J. Hamhalter and E. Turilova, “Orthogonal measures on state spaces and context structures of quantum theory,” Int. J. Theor. Phys. 55, 3353–3365 (2016).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    J. Hamhalter and E. Turilova, “Choquet order and Jordan morphisms of operator algebras,” Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh. 140, 119–124 (2017).Google Scholar
  9. 9.
    C. Heunen, N. P. Landsman, and B. Spitters, “Bohrification of operator algebras and quantum logic,” Synthese 186, 719–752 (2012).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    R. V. Kadison and J. R. Ringrose, Theory of Operator Alegebras I, II (Academic, New York, 1986).Google Scholar
  11. 11.
    K. Landsman, Foundations of Quantum Theory, From Classical Concepts to Operator Algebras, Vol. 188 of Fundamental Theories of Physics (Springer Int., Switzerland, 2017).MATHGoogle Scholar
  12. 12.
    B. Lindenhovius, PhD Thesis (Radbound Univ., Nijmegen, 2016).Google Scholar
  13. 13.
    J. Lukeš, J. Malý, I. Netuka, and J. Spurný, Integral Representation Theory, Applications to Convexity, Banach Spaces, and Potential Theory (de Gruyter, Berlin, New York, 2010).MATHGoogle Scholar
  14. 14.
    R. Phelps, Lectures on Choquet’s Theorem (van Nostrand, Princeton, New Jersey, 1966).MATHGoogle Scholar
  15. 15.
    M. Takesaki, Theory of Operator Algebras I, II, III (Springer, Berlin Heidelberg, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsCzech Technical University in Prague, Faculty of Electrical EngineeringPraha 6Czech Republic
  2. 2.Department of Mathematical Statistics, Institute of Computational Mathematics and Information TechnologiesKazan Federal UniversityKazanRussia

Personalised recommendations