Ricci Solitons on Lorentzian Walker Manifolds of Low Dimension
Article
First Online:
Received:
- 9 Downloads
Abstract
The Ricci soliton equation on four-dimensional conformally flat Lorentzian Walker manifolds is investigated, non-trivial solutions are found. New Ricci soliton metrics on three dimensional Lorentzian Walker manifolds are obtained.
Keywords and phrases
Ricci soliton Walker manifold conformally flat metricPreview
Unable to display preview. Download preview PDF.
References
- 1.R. S. Hamilton, “The Ricci flow on surfaces,” Contemp. Math. 71, 237–262 (1988).MathSciNetCrossRefGoogle Scholar
- 2.H.-D. Cao, “Recent progress on Ricci solitons,” Adv. Lect.Math. 11, 1–38 (2010).MathSciNetMATHGoogle Scholar
- 3.M. Brozos-Vazquez, E. Garcia-Rio, and S. Gavino-Fernandez, “Locally conformally flat Lorentzian gradient Ricci solitons,” J. Geom. Anal. 23, 1196–1212 (2013).MathSciNetCrossRefMATHGoogle Scholar
- 4.M. Brozos-Vazquez, E. Garcia-Rio, P. Gilkey, S. Nikcevic, and R. Vazquez-Lorenzo, The Geometry of Walker Manifolds, Vol. 5 of Synthesis Lectures on Mathematics and Statistics (Morgan and Claypool, San Rafael, CA, 2009).MATHGoogle Scholar
- 5.A. S. Galaev, “Conformally flat Lorentzian manifolds with special holonomy groups,” Sb.: Math. 204 (9), 29–50 (2013).MathSciNetMATHGoogle Scholar
- 6.M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio, and S. Gavino-Fernandez, “Three-dimensional Lorentzian homogeneous Ricci solitons,” Israel J. Math. 188, 385–403 (2012).MathSciNetCrossRefMATHGoogle Scholar
- 7.W. Batat, M. Brozos-Vazquez, E. Garcia-Rio, and S. Gavino-Fernandez, “Ricci solitons on Lorentzian manifolds with large isometry groups,” Bull. London Math. Soc. 43, 1219–1227 (2011).MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018