Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 65–70 | Cite as

Spin Polarization-Scaling Quantum Maps and Channels

  • S. N. Filippov
  • K. Yu. Magadov


We introduce a spin polarization-scaling map for spin-j particles, whose physical meaning is the decrease of spin polarization along three mutually orthogonal axes. We find conditions on three scaling parameters under which the map is positive, completely positive, entanglement breaking, 2-tensor-stable positive, and 2-locally entanglement annihilating. The results are specified for maps on spin-1 particles. The difference from the case of spin-1/2 particles is emphasized.

Keywords and phrases

Spin polarization qubit qutrit positive map quantum channel entanglement breaking 2-tensor-stable properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Byrd, C. A. Bishop, and Y.-C. Ou, “General open-system quantum evolution in terms of affine maps of the polarization vector,” Phys. Rev. A 83, 012301 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Chȩcińska and K. WСdkiewicz, “Complete positivity conditions for quantum qutrit channels,” Phys. Rev. A 80, 032322 (2009).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.-D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra Appl. 10, 285–290 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. N. Filippov, “PPT-Inducing, distillation-prohibiting, and entanglement-binding quantum channels,” J. Russ. Laser Res. 35, 484–491 (2014).CrossRefGoogle Scholar
  5. 5.
    S. N. Filippov and K. Yu. Magadov, “Positive tensor products of qubit maps and n-tensor-stable positive qubit maps,” J. Phys. A:Math. Theor. 50, 055301 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. N. Filippov, A. A. Melnikov, and M. Ziman, “Dissociation and annihilation of multipartite entanglement structure in dissipative quantum dynamics,” Phys. Rev. A 88, 062328 (2013).CrossRefGoogle Scholar
  7. 7.
    S. N. Filippov, T. Rybár, and M. Ziman, “Local two-qubit entanglement-annihilating channels,” Phys. Rev. A 85, 012303 (2012).CrossRefGoogle Scholar
  8. 8.
    S. N. Filippov and M. Ziman, “Bipartite entanglement-annihilating maps: Necessary and sufficient conditions,” Phys. Rev. A 88, 032316 (2013).CrossRefGoogle Scholar
  9. 9.
    S. N. Filippov and M. Ziman, “Entanglement sensitivity to signal attenuation and amplification,” Phys. Rev. A 90, 010301(R) (2014).CrossRefGoogle Scholar
  10. 10.
    S. K. Goyal, B. N. Simon, R. Singh, and S. Simon, “Geometry of the generalized Bloch sphere for qutrits,” J. Phys. A:Math. Theor. 49, 165203 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. Heinosaari and M. Ziman, The Mathematical Language of Quantum Theory (Cambridge Univ. Press, Cambridge, 2012).zbMATHGoogle Scholar
  12. 12.
    A. S. Holevo, “Quantum coding theorems,” Russ. Math. Surv. 53, 1295–1331 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A 223, 1–8 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Horodecki, M. Horodecki, and R. Horodecki, “Binding entanglement channels,” J. Mod. Opt. 47, 347–354 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Horodecki, P. W. Shor, and M. B. Ruskai, “Entanglement breaking channels,” Rev. Math. Phys. 15, 629–641 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators,” Rep. Math. Phys. 3, 275–278 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Jiang, S. Luo, and S. Fu, “Channel-state duality,” Phys. Rev. A 87, 022310 (2013).CrossRefGoogle Scholar
  19. 19.
    V. Karimipour, A. Mani, and L. Memarzadeh, “Characterization of qutrit channels in terms of their covariance and symmetry properties,” Phys. Rev. A 84, 012321 (2011).CrossRefGoogle Scholar
  20. 20.
    C. King, “Maximization of capacity and l p norms for some product channels,” J. Math. Phys. 43, 1247–1260 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    L. J. Landau and R. F. Streater, “On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras,” Linear Algebra Appl. 193, 107–127 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    W. A. Majewski and T. I. Tylec, “Comment on channel-state duality,” Phys. Rev. A 88, 026301 (2013).CrossRefGoogle Scholar
  23. 23.
    L. Moravči´ková and M. Ziman, “Entanglement-annihilating and entanglement-breaking channels,” J. Phys. A: Math. Theor. 43, 275306 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Müller-Hermes, D. Reeb, and M.M. Wolf, “Positivity of linearmaps under tensor powers,” J.Math. Phys. 57, 015202 (2016).CrossRefzbMATHGoogle Scholar
  25. 25.
    M. Nathanson and M. B. Ruskai, “Pauli diagonal channels constant on axes,” J. Phys. A: Math. Theor. 40, 8171–8204 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).zbMATHGoogle Scholar
  27. 27.
    A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    D. Petz and H. Ohno, “Generalizations of Pauli channels,” Acta Math. Hungar. 124, 165–177 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    J. de Pillis, “Linear transformations which preserve Hermitian and positive semidefinite operators,” Pacif. J.Math. 23, 129–137 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    M. B. Ruskai, “Qubit entanglement breaking channels,” Rev. Math. Phys. 15, 643–662 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    M. B. Ruskai, S. Szarek, and E. Werner, “An analysis of completely-positive trace-preserving maps onM2,” Linear Algebra Appl. 347, 159–187 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    P.W. Shor, “Additivity of the classical capacity of entanglement-breaking quantum channels,” J.Math. Phys. 43, 4334–4340 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    E. Størmer, “Positive linear maps of operator algebras,” ActaMath. 110, 233–278 (1963).MathSciNetzbMATHGoogle Scholar
  34. 34.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Theory of Angular Momentum (World Scientific, Singapore, 1988).CrossRefGoogle Scholar
  35. 35.
    R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations