Lobachevskii Journal of Mathematics

, Volume 38, Issue 5, pp 967–970 | Cite as

Simulation of virtual time profile in conservative parallel discrete event simulation algorithm for small-world network

Article
  • 29 Downloads

Abstract

We simulate model for evolution of local virtual time profile in conservative parallel discrete event the simulation (PDES) algorithm with long-range communication links. The main findings of simulation are that i) growth exponent depends logarithmically on the concentration p of long-range links; ii) utilisation of processing elements time decreases slowly with p. Thismeans that the conservative PDES with long-range communication links is fully scalable.

Keywords and phrases

Parallel discrete event simulation conservative algorithm local virtual time scalability synchronisation processing elements small-world networks long-range interactions critical exponents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Joubert, H. Leather, M. Parsons, F. Peters, and M. Sawyer, Parallel Computing: On the Road to Exascale (IOS Press BV, Amsterdam, 2016).Google Scholar
  2. 2.
    D. H. Bailey, H. David, J. Dongarra, G. Gao, A. Hoisie, J. Hollingsworth, D. Jefferson, C. Kamath, A. Malony, and D. Quinian, “Performance technologies for peta-scale systems: a white paper prepared by the performance evaluation research center and collaborators,” White Paper (Lawrence Berkeley Natl. Laboratories, 2003).Google Scholar
  3. 3.
    R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM 33 (10), 30–53 (1990).CrossRefGoogle Scholar
  4. 4.
    L. N. Shchur and M. A. Novotny, “Evolution of time horizons in parallel and grid simulations,” Phys. Rev. E 70, 026703 (2004).CrossRefGoogle Scholar
  5. 5.
    D. R. Jefferson, “Virtual time,” ACMTrans. Program. Languages Syst. 7, 404–425 (1985).CrossRefGoogle Scholar
  6. 6.
    G. Korniss, Z. Toroczkai, M. A. Novotny, and P. A. Rikvold, “From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth,” Phys. Rev. Lett. 84, 1351 (2000).CrossRefGoogle Scholar
  7. 7.
    L. F. Ziganurova, M. A. Novotny, and L. N. Shchur, “Model for the evolution of the time profile in optimistic parallel discrete event simulations,” J. Phys.: Conf. Ser. 681, 012047 (2016).Google Scholar
  8. 8.
    H. Guclu, G. Korniss, M. A. Novotny, Z. Toroczkai, and Z. Racz, “Synchronization landscapes in smallworld-connected computer networks,” Phys. Rev. E 73, 066115 (2006).CrossRefGoogle Scholar
  9. 9.
    D. J. Watts, and S. H. Strogatz, “Collective dynamics of’ small-world’ networks,” Nature 393 (6684), 440–442 (1998).CrossRefMATHGoogle Scholar
  10. 10.
    G. Korniss, M. A. Novotny, Z. Toroczkai, and P. A. Rikvold, “Suppressing roughness of virtual times in parallel discrete-event simulations,” Science 299 (5607), 677–679 (2003).CrossRefGoogle Scholar
  11. 11.
    M. S. Guskova, L. Yu. Barash, and L. N. Shchur, “RNGAVXLIB: program library for random number generation, AVX realization,” Comput. Phys. Commun. 200, 402–405 (2016).CrossRefMATHGoogle Scholar
  12. 12.
    M. Kardar, G. Parisi, and Y. C. Zhang “Dynamic scaling of growing interfaces,” Phys. Rev. Lett. 56, 889 (1986).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Science Center in ChernogolovkaChernogolovka, Moscow oblastRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsChernogolovka, Moscow oblastRussia

Personalised recommendations