Lobachevskii Journal of Mathematics

, Volume 38, Issue 1, pp 24–29 | Cite as

Waves interaction in the Fisher–Kolmogorov equation with arguments deviation

  • S. AleshinEmail author
  • S. Glyzin
  • S. Kaschenko


We considered the process of density wave propagation in the logistic equation with diffusion, such as Fisher–Kolmogorov equation, and arguments deviation. Firstly, we studied local properties of solutions corresponding to the considered equation with periodic boundary conditions using asymptotic methods. It was shown that increasing of period makes the spatial structure of stable solutions more complicated. Secondly, we performed numerical analysis. In particular, we considered the problem of propagating density waves interaction in infinite interval. Numerical analysis of the propagating waves interaction process, described by this equation, was performed at the computing cluster of YarSU with the usage of the parallel computing technology—OpenMP. Computations showed that a complex spatially inhomogeneous structure occurring in the interaction of waves can be explained by properties of the corresponding periodic boundary value problem solutions by increasing the spatial variable changes interval. Thus, the complication of the wave structure in this problem is associated with its space extension.

Keywords and phrases

Fisher–Kolmogorov equation diffusion spatial deviation delay differential equation normal form numerical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Bull. Univ. d’EtatMoscou, Ser. A 1, 1–26 (1937).Google Scholar
  2. 2.
    R. A. Fisher, Ann. Eugen. 7, 355–369 (1937).CrossRefGoogle Scholar
  3. 3.
    S. V. Aleshin, S. D. Glyzin, and S. A. Kaschenko, Model. Anal. Inform. Sist. 22, 304–321 (2015).CrossRefGoogle Scholar
  4. 4.
    S. V. Aleshin, S. D. Glyzin, and S. A. Kaschenko, Model. Anal. Inform. Sist. 22, 609–628 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Kakutani and L. Markus, Ann. Math. Stud. 4, 1–18 (1958).Google Scholar
  6. 6.
    S. A. Kaschenko, in Studies in Stability and the Theory of Oscillation (Yarosl. Gos. Univ., Yaroslavl’, 1981), Vol. 1, pp. 64–85 [in Russian].Google Scholar
  7. 7.
    Yu. S. Kolesov, in Mathematical Models in Biology and Medicine (Inst. Mat. Kibernet., Vil’nyus, 1985), No. 1, pp. 93–103 [in Russian].Google Scholar
  8. 8.
    Y. Kuang, Delay Differential Equations. With Applications in Population Dynamics (Academic, Boston, 1993).zbMATHGoogle Scholar
  9. 9.
    S. A. Kashchenko, Autom. Control Comput. Sci. 47, 470–494 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Wu, Theory and Applications of Partial Functional Differential Equations Theory and Applications of Partial Functional Differential Equations (Springer, New York, 1996).CrossRefzbMATHGoogle Scholar
  11. 11.
    S. D. Glyzin, Model. Anal. Inform. Sist. 16 (3), 96–116 (2009).Google Scholar
  12. 12.
    A. A. Kashchenko, Model. Anal. Inform. Sist. 18 (3), 58–62 (2015).MathSciNetGoogle Scholar
  13. 13.
    S. D. Glyzin, Autom. Control Comput. Sci. 47, 452–469 (2013).CrossRefGoogle Scholar
  14. 14.
    S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, Comput.Math. Math. Phys. 50, 816–830 (2010).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Scientific Center in ChernogolovkaRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations