Lobachevskii Journal of Mathematics

, Volume 34, Issue 1, pp 45–60 | Cite as

Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger’s operators



We show that the spectrum of a Schrödinger’s operator is equal to the generalized spectrum of two bounded operators. Using an approximation method of integral operator, based on regularization by convolution and Fourier series, we approach perfectly the spectrum of the harmonic oscillator.

Keywords and phrases

Spectrum Generalized spectrum Pseudospectrum Shrödinger’s operator Integral operator Convolution Fourier series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Davies, J. Operator Theory 43, 243 (2000).MathSciNetMATHGoogle Scholar
  2. 2.
    H. Guebbai and A. Largillier, Spectra and Pseudospectra of Convection-Diffusion Operator (Accepted in Lobachevskii Journal ofMathematics 2012).Google Scholar
  3. 3.
    T. Kato, Perturbation Theory of Linear Operators (Springer-Verlag, Berlin, Heidelberg and New York, 1980).MATHGoogle Scholar
  4. 4.
    M. Ahues, A. Largillier, and B. V. Limaye, Spectral Computations for Bounded Operators (Chapman and Hall/CRC, New York, 2001).MATHCrossRefGoogle Scholar
  5. 5.
    A. J. Laub, Matrix Analysis for Scientists and Engineers (SIAM, California, 2005).MATHCrossRefGoogle Scholar
  6. 6.
    G. F. Roach, Green’s Functions (Cambridge University Press, New York, 1982).MATHGoogle Scholar
  7. 7.
    H. Guebbai, Regularization and Fourier Series for Fredholm Integral Equations of the Second Kind with A Weakly Singular Kernel, (submitted to AppliedMathematic Letter 2011).Google Scholar
  8. 8.
    L. Boulton, J. Operator Theory 47, 413 (2002).MathSciNetMATHGoogle Scholar
  9. 9.
    E.B. Davies and M. Plum, Spectral Pollution, arXiv:math/0302145v1, (2002)Google Scholar
  10. 10.
    E. Shargorodsky, Bull. London Math. Soc. 41, 524 (2009).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    S. Roch and B. Silbermann, J. Operator Theory 35, 241 (1996).MathSciNetMATHGoogle Scholar
  12. 12.
    D. F. Griffiths and G. A. Watson, Numerical Analysis (Longman Sci. Tech. Publ., Harlow, UK, 1992).MATHGoogle Scholar
  13. 13.
    L. N. Trefethen, SIAM Review 39, 383 (1997).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    R. A. Adams, Sobolev Spaces (Academic Press, New York, 1975).MATHGoogle Scholar
  15. 15.

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Appliquées et de Modélisation, Faculté de Mathématiques et de l’Informatique et des Sciences de la MatiéreUniversité 8 Mai 1945 GuelmaGuelmaAlgérie
  2. 2.Institut Camille Jordan, UMR5208Université de LyonLyonFrance

Personalised recommendations