Lobachevskii Journal of Mathematics

, Volume 33, Issue 2, pp 175–182 | Cite as

Some approximation properties by q-Szász-Mirakyan-Baskakov-Stancu operators

  • Vijay Gupta
  • Harun Karsli


In the present paper we propose the Stancu type generalization of q-Szász-Mirakyan-Baskakov operators (see e.g. [12, 6]). We apply q-derivatives, and q-Beta functions to obtain the moments of the q-Szász-Mirakyan-Baskakov-Stancu operators. Here we estimate some direct approximation results for these operators.

Keywords and phrases

q-Szász-Mirakyan-Baskakov-Stancu operators q-improper integral q-Beta functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aral, Math. Comput.Model. 47, 1052 (2008).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    A. Aral and V. Gupta, Calcolo 43(3), 151 (2006).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    R.A. DeVore and G. G. Lorentz, Constructive Approximation (Springer, Berlin 1993).MATHGoogle Scholar
  4. 4.
    A. D. Gadzhiev, Math. Zametki 20(5), 781 (1976); English Translation,Math Notes 20 (5–6), 996 (1976).MATHGoogle Scholar
  5. 5.
    G. Gasper and M. Rahman, Basic Hypergeometrik Series, Encyclopedia of Mathematics and its Applications, Vol. 35 (Cambridge University Press, Cambridge, UK, 1990).Google Scholar
  6. 6.
    V. Gupta, Bull Inst Math Acad Sinica 21(3), 275 (1993).MathSciNetMATHGoogle Scholar
  7. 7.
    V. Gupta and A. Aral, Applied Mathematics and Computation 216, 374 (2010).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. Gupta, A. Aral, and M. Ozhavzali, Approximation by q-Szász-Mirakyan-Baskakov operators, Fasciculi Math, to appear.Google Scholar
  9. 9.
    V. G. Kac and P. Cheung, Quantum Calculus (Universitext, Springer-Verlag, New York, 2002).MATHCrossRefGoogle Scholar
  10. 10.
    T. H. Koornwinder, in: M. Gerstenhaber, J. Stasheff (Eds), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, (Contemp.Math., 134, Amer. Math. Soc., 1992).Google Scholar
  11. 11.
    N. I. Mahmudov, Mediterr J.Math. 7(3), 297 (2010).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    G. Prasad, P. N. Agrawal, and H. S. Kasana, Math. Forum 6(2), 1 (1983).Google Scholar
  13. 13.
    A. De Sole and V. G. Kac, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16(1), 11 (2005).MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.School of Applied SciencesNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Faculty of Science and Arts Department of MathematicsAbant Izzet Baysal UniversityGolkoy BoluTurkey

Personalised recommendations