Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 108–112 | Cite as


  • L. M. ZhuravlevaEmail author
  • N. M. Legkii

Abstract—The study considers the possibility of changing the isotopic composition of a substance to improve the physical properties of the material and the optoelectronic characteristics of a photodetector as the most common device in optoelectronics. It is shown that the reduction of heavy isotopes in the semiconductor material of photodetectors increases the mobility of charge carriers, the light absorption coefficient, and quantum efficiency, while reducing the number of band gap sublevels that affect the dark current. This increases the photodetector sensitivity, decreases the magnitude of the dark current, and improves the signal power to noise power ratio at the output of the photodetector. Technologies for improving the properties of a material by improving the characteristics of bulk semiconductor crystals, multiple quantum wells, and superlattices are compared.


  1. 1.
    A. S. Sigov, E. G. Andrianova, D. O. Zhukov, S. V. Zykov, and I. E. Tarasov, “Quantum informatics: overview of the main achievements,” Rossiiskii tekhnologicheskii zhurnal (Russian Technological Journal) 7 (1), 5 (2019) [in Russian]. Scholar
  2. 2.
    L. M. Zhuravleva and V. G. Plekhanov, “Prospects for the use of isotopic nanoengineering in telecommunication systems,” in Advances in Nanoengineering: Electronics, Materials and Assembly, Ed. by J. Davies and M. Thompson (World Scientific, Singapore, 2007; Tekhnosfera, Moscow, 2011), Appendix No. 11 to russ. ed., p. 478.Google Scholar
  3. 3.
    L. Zhuravleva and N. Legkiy, “Development prospects for fiber optic information transmission systems,” Int. J. Appl. Eng. Res. 11, 10923 (2016).Google Scholar
  4. 4.
    L. Zhuravleva, N. Legkiy, and V. Plekhanov, “Isotopic nanostructure,” Life Sci. J. 11, 8s (2014).Google Scholar
  5. 5.
    V. Plekhanov, L. Zhuravleva, and N. Legkiy, “Using isotopic effect in nanostructures,” Life Sci. J. 11, 306 (2014).Google Scholar
  6. 6.
    M. Cardona and M. L. W. Thewalt, “Isotope effect on the optical spectra of semiconductors,” Rev. Mod. Phys. 77, 1173 (2005).CrossRefGoogle Scholar
  7. 7.
    A. T. Collins, S. C. Lawson, and G. Davis, “Indirect energy gap of diamond,” Phys. Rev. Lett. 65, 891 (1992).CrossRefGoogle Scholar
  8. 8.
    A. V. Gusev,  V. A. Gavva,  and  A. M. Gibin, Obtaining  and  Properties  of  Stable  Silicon Isotopes of High Chemical and Isotopic Purity. Accessed Sept. 6, 2019.Google Scholar
  9. 9.
    L. M. Zhuravleva and N. M. Legkii, “New isotopic materials for optoelectronics,” Nanotechnol. Russ. 12, 545 (2017).CrossRefGoogle Scholar
  10. 10.
    Press Release (2001) of Isonics Corporation (Golden, CO, 2001).Google Scholar
  11. 11.
    I. S. Shlimak, “Neutron transmutation doping of semiconductors: science and application,” Phys. Solid State 41, 716 (1999).CrossRefGoogle Scholar
  12. 12.
    V. E. Borisenko, A. I. Vorob’eva, and E. A. Utkina, Nanoelectronics (Binom, Moscow, 2009) [in Russian].Google Scholar
  13. 13.
    R. J. Martín-Palma, F. Agullo-Rueda, and J. M. Mar-tínez-Duart, Nanotechnology for Microelectronics and Optoelectronics (Elsevier Science, Amsterdam, 2006; Tekhnosfera, Moscow, 2007).Google Scholar
  14. 14.
    V. A. Bogdanova, N. A. Davletkil’deev, N. A. Semikolenova, and E. N. Sidorov, “Effective electron mass in heavily doped GaAs in the ordering of impurity complexes,” Semiconductors 36, 385 (2002).CrossRefGoogle Scholar
  15. 15.
    E. Rosencher and B. Vinter, Optoelectronics (Cambridge Univ. Press, Cambridge, 2002; Tekhnosfera, Moscow, 2006).Google Scholar
  16. 16.
    I. K. Vereshchagin, S. M. Kokin, and V. A. Nikitenko, Solid State Physics (Vysshaya Shkola, Moscow, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Russian Transport UniversityMoscowRussia
  2. 2.MIREA Russian Technological UniversityMoscowRussia

Personalised recommendations