Advertisement

Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 113–117 | Cite as

Luminescent Yttrium–Aluminum Garnet Ceramics Obtained by Conventional Sintering on Air

  • V. D. PayginEmail author
  • S. A. Stepanov
  • D. T. Valiev
  • E. S. Dvilis
  • O. L. Khasanov
  • V. A. Vaganov
  • T. R. Alishin
  • M. P. Kalashnikov
  • A. E. Ilela
FUNCTIONAL AND CONSTRUCTION NANOMATERIALS

Abstract—An yttrium aluminum garnet (YAG) luminescent ceramic activated by Ce3+ has been obtained by uniaxial static pressing followed by sintering in air at a temperature of 1650°C. The initial phosphor powder was characterized and the linear shrinkage dynamics studied. The morphological, elastoplastic, and optical-luminescent properties of the obtained YAG:Ce ceramic samples were studied. The technological mode for manufacturing ceramics of this type with a density of at least 98% and luminescence efficiency of 45% was determined.

Notes

FUNDING

The study was carried out on the basis of the Nanocenter of Tomsk Polytechnic University with financial support from the Russian Foundation for Basic Research and the administration of Tomsk oblast (project no. 18-43-703014: Characterization of phosphor powder, study of the optical and luminescent properties of ceramic samples), and with partial support from the Russian Science Foundation (project no. 17-13-01233: Ceramic samples, XRD analysis, measurement of mechanical properties) and the state task “Science” (no. 11.7700.2017/BCh: Study of the linear shrinkage dynamics).

REFERENCES

  1. 1.
    D. Chen, W. Xiang, X. Liang, et al., J. Eur. Ceram. Soc. 35, 859 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Chen and Y. Chen, Ceram. Int. 40, 15325 (2014).CrossRefGoogle Scholar
  3. 3.
    S. Agarwal, M. S. Haseman, A. Khamehchi, et al., Opt. Mater. Express 7, 1055 (2017).CrossRefGoogle Scholar
  4. 4.
    N. Wei, L. Tiecheng, L. Feng, et al., Appl. Phys. Lett. 101, 061902 (2016).CrossRefGoogle Scholar
  5. 5.
    D. Haranath, H. Chander, P. Sharma, and S. Singh, Appl. Phys. Lett. 89, 173118 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Raukas, J. Kelso, Y. Zheng, et al., ECS J. Solid State Sci. Technol. 2, 3168 (2013).CrossRefGoogle Scholar
  7. 7.
    E. S. Lukin, Ogneupory Tekh. Keram., No. 9, 13 (1997).Google Scholar
  8. 8.
    S. F. Wang, J. Zhang, D. W. Lo, et al., Prog. Solid State Chem. 41, 20 (2013).CrossRefGoogle Scholar
  9. 9.
    V. V. Osipov, A. V. Ishchenko, V. A. Shitov, et al., Opt. Mater. 71, 45 (2016).CrossRefGoogle Scholar
  10. 10.
    K. Kamada, T. Yanagida, J. Pejchal, et al., J. Phys. D: Appl. Phys. 44, 1 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Opt. Mater. 33, 688 (2011).CrossRefGoogle Scholar
  12. 12.
    V. V. Osipov, A. V. Ishchenko, V. A. Shitov, et al., Opt. Mater. 71, 98 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Hu, C. Lu, G. Zhou, et al., Ceram. Int. 42, 6935 (2016).CrossRefGoogle Scholar
  14. 14.
    E. H. Penilla, Y. Kodera, and J. E. Garay, Mater. Sci. Eng. B 177, 1172 (2012).CrossRefGoogle Scholar
  15. 15.
    R. Chaim, Mater. Sci. Eng., A 443, 25 (2007).CrossRefGoogle Scholar
  16. 16.
    N. Frage, S. Kalabukhov, N. Sverdlov, et al., J. Eur. Ceram. Soc. 30, 3331 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Sokol, S. Kalabukhov, V. Kasiyan, et al., Opt. Mater. 38, 204 (2014).CrossRefGoogle Scholar
  18. 18.
    H. M. Wang, Z. Y. Huang, J. S. Jiang, et al., Mater. Des. 105, 9 (2016).CrossRefGoogle Scholar
  19. 19.
    D. Lozano-Mandujano, J. Zarate-Medina, R. Morales-Estrella, and J. Munoz-Saldana, Ceram. Int. 39, 3141 (2013).CrossRefGoogle Scholar
  20. 20.
    P. Palmero, B. Boneli, and G. Fantozzi, Mater. Res. Bull. 48, 2589 (2013).CrossRefGoogle Scholar
  21. 21.
    M.-L. Brandily-Anne, J. Lumeau, L. Glebova, et al., J. Non-Cryst. Solids 356, 2337 (2010).CrossRefGoogle Scholar
  22. 22.
    R. Reisfeld, H. Minti, A. Patra, et al., Spectrochim. Acta, Part A 54, 2143 (1998).CrossRefGoogle Scholar
  23. 23.
    A. Sontakke, J. Ueda, Y. Katayama, et al., J. Appl. Phys. 117, 013105 (2015).CrossRefGoogle Scholar
  24. 24.
    K. Zhang, H. Liu, Y. Wu, and W. Hu, J. Alloys Compd. 453, 265 (2008).CrossRefGoogle Scholar
  25. 25.
    Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng. B 106, 251 (2004).CrossRefGoogle Scholar
  26. 26.
    P. Dorenbos, J. Lumin. 136, 122 (2013).CrossRefGoogle Scholar
  27. 27.
    D. Valiev, T. Han, V. Vaganov, and S. Stepanov, J. Phys. Chem. Solids 116, 1 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. D. Paygin
    • 1
    Email author
  • S. A. Stepanov
    • 1
  • D. T. Valiev
    • 1
  • E. S. Dvilis
    • 1
  • O. L. Khasanov
    • 1
  • V. A. Vaganov
    • 1
  • T. R. Alishin
    • 1
  • M. P. Kalashnikov
    • 1
    • 2
  • A. E. Ilela
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of Strength and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations