Advertisement

Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 118–124 | Cite as

CERAMIC COMPOSITE BASED ON ZIRCONIA REINFORCED BY SINGLE-WALLED CARBON NANOTUBES

  • A. A. LeonovEmail author
  • E. S. Dvilis
  • O. L. Khasanov
  • V. D. Paygin
  • M. P. Kalashnikov
  • M. S. Petukevich
  • A. A. Panina
FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • 16 Downloads

Abstract

The effect of the relative content of single-walled carbon nanotubes (SWCNTs) on the compaction, phase composition, microstructure, and mechanical properties of composites based on yttria-stabilized zirconia obtained via spark plasma sintering is studied. We found that a substantial increase in the relative density from 98.26 to 99.98% is observed in the composites containing 0.1 and 0.5 wt % SWCNT. It is established that SWCNTs partially limit the monoclinic–tetragonal transition occurring during high-temperature treatment of zirconia. The fracture toughness of the composite containing 1 wt % SWCNT increases by 38% compared to ceramics without additives.

Notes

ACKNOWLEDGMENTS

The authors are grateful to M.R. Predtechenskii and A.E. Bezrodnyi for providing “Tuball” single-walled carbon nanotubes.

FUNDING

The study was performed on the basis of Nano Center of National Research Tomsk Polytechnic University.

REFERENCES

  1. 1.
    T. V. Hughes and C. R. Chambers, “Manufacture of carbon filaments,” US Patent No. 405480 (1889).Google Scholar
  2. 2.
    P. Schutzenberger and L. Schutzenberger, “Sur quelques faits relatifs l’histoire du carbone,” Acad. Sci. Paris 111, 774 (1890).Google Scholar
  3. 3.
    L. V. Radushkevich and V. M. Luk’yanovich, “On the structure of carbon formed during the thermal decomposition of carbon monoxide on an iron contact,” Zh. Fiz. Khim. 26, 88 (1952).Google Scholar
  4. 4.
    S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London, U.K.) 354, 56 (1991).  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  5. 5.
    S. S. Samal and S. Bal, “Carbon nanotube reinforced ceramic matrix composite—a review,” J. Min. Mater. Char. Eng. 7, 4236 (2008).  https://doi.org/10.4236/jmmce.2008.74028 CrossRefGoogle Scholar
  6. 6.
    A. Peigney, C. H. Laurent, E. Flahaut, and A. Rousset, “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceram. Int. 26, 677 (2000).  https://doi.org/10.1016/S0272-8842(00)00004-3 CrossRefGoogle Scholar
  7. 7.
    M. Yu, O. Lourie, M. J. Dyer, et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science (Washington, DC, U. S.) 287, 1126 (2000).  https://doi.org/10.1126/science.287.5453.637 CrossRefGoogle Scholar
  8. 8.
    M. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552 (2000).  https://doi.org/10.1103/PhysRevLett.84.5552 CrossRefGoogle Scholar
  9. 9.
    A. Thess, R. Lee, P. Nikolaev, et al., “Crystalline ropes of metallic carbon nanotubes,” Science (Washington, DC, U. S.) 273, 483 (1996).  https://doi.org/10.1126/science.273.5274.483 CrossRefGoogle Scholar
  10. 10.
    Y. Ando, X. Zhao, H. Shimoyama, et al., “Physical properties of multiwalled carbon nanotubes,” Int. J. Inorg. Mater. 1, 77 (1999).  https://doi.org/10.1016/S1463-0176(99)00012-5 CrossRefGoogle Scholar
  11. 11.
    S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613 (2000).  https://doi.org/10.1103/PhysRevLett.84.4613 CrossRefGoogle Scholar
  12. 12.
    P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett. 87, 215502 (2001).  https://doi.org/10.1103/PhysRevLett.87.215502 CrossRefGoogle Scholar
  13. 13.
    E. A. Lyapunova, M. V. Grigor’ev, A. P. Skachkov, et al., “Structure and mechanical properties of zirconium oxide modified with carbon nanotubes,” Vestn. PNIPU, Mekh., No. 4, 10 (2015). https://doi.org/10.15593/perm.mech/2015.4.18
  14. 14.
    Yu. I. Golovin, B. Ya. Farber, V. V. Korenkov, et al., “Mechanical properties of baddeleyite nanoceramics modified by carbon nanotubes,” Vestn. TGU, Estestv. Tekh. Nauki 17, 1380 (2012).Google Scholar
  15. 15.
    A. A. Leonov, “Microstructure and properties of single wall carbon nanotubes/zirconia composite,” in Proceedings of the International Conference with School and Master-Classes for Young Scientists on Chemical Technology of Functional Materials, Moscow, Nov. 30–Dec. 1,2017 (RKhTU im. D.I. Mendeleeva, Moscow, 2017), p. 35.Google Scholar
  16. 16.
    Yu. I. Golovin, A. I. Tyurin, V. V. Korenkov, V. V. Rodaev, A. O. Zhigachev, A. V. Umrikhin, T. S. Pirozhkova, and S. S. Razlivalova, “Effect of carbon nanotubes on strength characteristics of nanostructured ceramic composites for biomedicine,” Nanotechnol. Russ. 13, 168 (2018).CrossRefGoogle Scholar
  17. 17.
    J. H. Shin and S. H. Hong, “Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics,” Mater. Sci. Eng., A 556, 382 (2012).  https://doi.org/10.1016/j.msea.2012.07.001 CrossRefGoogle Scholar
  18. 18.
    J. P. Zhou, Q. M. Gong, K. Y. Yuan, et al., “The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol % yttria stabilized zirconia ceramics,” Mater. Sci. Eng. A 520, 153 (2009).  https://doi.org/10.1016/j.msea.2009.05.014 CrossRefGoogle Scholar
  19. 19.
    A. Leonov, “Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering,” Mater. Today: Proc. 11, 66 (2019).  https://doi.org/10.1016/j.matpr.2018.12.108 CrossRefGoogle Scholar
  20. 20.
    A. A. Leonov and E. V. Abdulmenova, “Alumina-based composites reinforced with single-walled carbon nanotubes,” IOP Conf. Ser.: Mater. Sci. Eng. 511, 012001 (2019).  https://doi.org/10.1088/1757-899X/511/1/012001 CrossRefGoogle Scholar
  21. 21.
    G. R. Anstis, P. Chantikul, B. N. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc. 64, 533 (1981).  https://doi.org/10.1111/j.1151-2916.1981.tb10320.x CrossRefGoogle Scholar
  22. 22.
    A. Kasperski, A. Weibel, D. Alkattan, et al., “Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering,” Scr. Mater. 69, 338 (2013).  https://doi.org/10.1016/j.scriptamat.2013.05.015 CrossRefGoogle Scholar
  23. 23.
    R. Hassan, A. Nisar, S. Ariharan, et al., “Multi-functionality of carbon nanotubes reinforced 3 mol % yttria stabilized zirconia structural biocomposites,” Mater. Sci. Eng., A 704, 329 (2017).  https://doi.org/10.1016/j.msea.2017.08.039 CrossRefGoogle Scholar
  24. 24.
    M. Mazaheri, D. Mari, Z. R. Hesabi, et al., “Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature,” Compos. Sci. Technol. 71, 939 (2011).  https://doi.org/10.1016/j.compscitech.2011.01.017 CrossRefGoogle Scholar
  25. 25.
    L. Shen, Y. H. Han, C. Xiang, et al., “Phase transformation behavior of ZrO2 by addition of carbon nanotubes consolidated by spark plasma sintering,” Scr. Mater. 69, 736 (2013).  https://doi.org/10.1016/j.scriptamat.2013.08.015 CrossRefGoogle Scholar
  26. 26.
    L. Melk, J. J. Roa Rovira, F. Garcaía-Marro, et al., “Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites,” Ceram. Int. 41, 2453 (2015).  https://doi.org/10.1016/j.ceramint.2014.10.060 CrossRefGoogle Scholar
  27. 27.
    R. Poyato, J. Macias-Delgado, A. Gallardo-López, et al., “Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites,” Ceram. Int. 41, 12861 (2015).  https://doi.org/10.1016/j.ceramint.2015.06.123 CrossRefGoogle Scholar
  28. 28.
    R. Poyato, A. Gallardo-López, F. Gutiérrez-Mora, et al., “Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites,” J. Eur. Ceram. Soc. 34, 1571 (2014).  https://doi.org/10.1016/j.jeurceramsoc.2013.12.024 CrossRefGoogle Scholar
  29. 29.
    M. H. Bocanegra-Bernal, A. Reyes-Rojas, A. Aguilar-Elguezabal, et al., “X-ray diffraction evidence of a phase transformation in zirconia by the presence of graphite and carbon nanotubes in zirconia toughened alumina composites,” Int. J. Refract. Met. Hard Mater. 35, 315 (2012).  https://doi.org/10.1016/j.ijrmhm.2012.07.004 CrossRefGoogle Scholar
  30. 30.
    A. A. Leonov, A. O. Khasanov, V. A. Danchenko, and O. L. Khasanov, “Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes,” IOP Conf. Ser.: Mater. Sci. Eng. 286, 012034 (2017).  https://doi.org/10.1088/1757-899X/286/1/012034 CrossRefGoogle Scholar
  31. 31.
    G. Yamamoto, Y. Sato, T. Takahashi, et al., “Preparation of single-walled carbon nanotube solids and their mechanical properties,” J. Mater. Res. 20, 2609 (2005).  https://doi.org/10.1557/JMR.2005.0345 CrossRefGoogle Scholar
  32. 32.
    A. Datye, K. Wu, G. Gomes, et al., “Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)-multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles,” Compos. Sci. Technol. 70, 2086 (2010).  https://doi.org/10.1016/j.compscitech.2010.08.005 CrossRefGoogle Scholar
  33. 33.
    R. Poyato, J. Macias-Delgado, A. Garcia-Valenzuela, et al., “Mechanical and electrical properties of low SWNT content 3YTZP composites,” J. Eur. Ceram. Soc. 35, 2351 (2015).  https://doi.org/10.1016/j.jeurceramsoc.2015.02.022 CrossRefGoogle Scholar
  34. 34.
    A. Kasperski, A. Weibel, D. Alkattan, et al., “Double-walled carbon nanotube/zirconia composites: preparation by spark plasma sintering, electrical conductivity and mechanical properties,” Ceram. Int. 41, 13731 (2015).  https://doi.org/10.1016/j.ceramint.2015.08.034 CrossRefGoogle Scholar
  35. 35.
    G. Suárez, B. K. Jang, E. F. Aglietti, and Y. Sakka, “Fabrication of dense ZrO2/CNT composites: influence of bead-milling treatment,” Metall. Mater. Trans. A 44, 4374 (2013).  https://doi.org/10.1007/s11661-013-1775-y CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Leonov
    • 1
    Email author
  • E. S. Dvilis
    • 1
  • O. L. Khasanov
    • 1
  • V. D. Paygin
    • 1
  • M. P. Kalashnikov
    • 1
  • M. S. Petukevich
    • 1
  • A. A. Panina
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations