Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 132–143 | Cite as


  • S. G. KarpovaEmail author
  • A. A. Ol’khov
  • A. V. Lobanov
  • A. A. Popov
  • A. L. Iordanskii


Comprehensive studies combining X-ray structural analysis, structural dynamic measurements with an EPR probe method, thermophysical measurements (DSC), and scanning electron microscopy have been carried out. The specificity of the crystalline and amorphous structure of ultrathin poly-3-hydroxybutyrate fibers containing a low concentration of manganese complex with chlorotetraphenyl porphyrin (MnCl2–TPP) (0–5 wt %), obtained via electroforming, is considered. When PHB of MnCl2–TTP complexes are added to PHB fibers, the morphology of the fibers changes, crystallinity increases, and the molecular mobility in the dense amorphous regions of the polymer slows down. The temperature effect on the fibers (annealing at 140°С) leads to a sharp increase in crystallinity and molecular mobility in the amorphous regions of poly-3-hydroxybutyrate. Exposure of fibers in an aqueous medium at 70°С leads to a sharp decrease in the enthalpy of melting and to an increase in the molecular mobility of the chains in the amorphous regions. The fibrous materials have bactericidal properties and must be directly applied in the creation of therapeutic systems with antibacterial and antitumor action.



We thank S.N. Chvalun, A.N. Bakirov for the XRD studies of PHB/MnCl2–TPP fibers, and Prof. U.J. Haenggi (Biomer®, Krailling, Germany) for providing poly-3-hydroxybutyrate.


We used equipment from the Center for Collective Use “New materials and technologies” of the Emanuel Institute of Biochemical Physics, RAS. The spectral and calorimetric studies were completed at the N.N. Semenov Institute of Chemical Physics, RAS, under the terms of the RF Ministry of Education and Science Government task (nos. AAAA-A18-118020890097-1 and AAAA-A17-117040610309-0).


We have no conflict of interest to declare.


  1. 1.
    K. A. Dubey, C. V. Chaudhari, Y. K. Bhardwaj, and L. Varshney, “Polymers, blends and nanocomposites for implants, scaffolds and controlled drug release applications,” Adv. Struct. Mater. 66, 1 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Ariga, A. Vinu, and M. Miyahara, “Recent progresses in bio-inorganic nanohybrids,” Curr. Nanosci., No. 2, 197 (2006).CrossRefGoogle Scholar
  3. 3.
    J. L. Mann, A. C. Yu, G. Agmon, and E. A. Appel, “Supramolecular polymeric biomaterials,” Biomater. Sci. 6, 10 (2018).CrossRefGoogle Scholar
  4. 4.
    D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21, 1184 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Ishihara and T. Mizushima, “Techniques for efficient entrapment of pharmaceuticals in biodegradable solid micro/nanoparticles,” Expert Opinion Drug Deliv. 7, 565 (2010).CrossRefGoogle Scholar
  6. 6.
    M. K. Haidar and H. Erol, “Nanofibers: new insights for drug delivery and tissue engineering,” Curr. Top. Med. Chem. 17, 1564 (2017).CrossRefGoogle Scholar
  7. 7.
    N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28, 325 (2010).CrossRefGoogle Scholar
  8. 8.
    R. M. Streicher, M. Schmidt, and S. Fiorito, “Nanosurfaces and nanostructures for artificial orthopedic implants,” Nanomedicine 2, 861 (2007).CrossRefGoogle Scholar
  9. 9.
    S. P. Miguel, D. R. Figueira, D. Simões, et al., “Electrospun polymeric nanofibres as wound dressings: a review,” Colloids Surf., B 169, 60 (2018).CrossRefGoogle Scholar
  10. 10.
    B. Zhou, Y. Li, H. Deng, et al., “Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers,” Colloids Surf., B 116, 432 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Cheng, X. Yang, X. Che, et al., “Biomedical application and controlled drug release of electrospun fibrous materials,” Mater. Sci. Eng. 90, 750 (2018).CrossRefGoogle Scholar
  12. 12.
    K. V. Malafeev, O. A. Moskalyuk, V. E. Yudin, et al., “Synthesis and properties of fibers prepared from lactic acid-glycolic acid copolymer,” Polymer Sci., Ser. A 59, 53 (2017).CrossRefGoogle Scholar
  13. 13.
    K. Cao, Y. Liu, A. A. Olkhov, et al., “PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery,” Drug Deliv. Transl. Res., No. 8, 291 (2018).CrossRefGoogle Scholar
  14. 14.
    R. Dorati, A. DeTrizio, T. Modena, et al., “Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy,” Pharmaceuticals 10 (4), E96 (2017). CrossRefGoogle Scholar
  15. 15.
    S. Das and A. B. Baker, “Biomaterials and nanotherapeutics for enhancing skin wound healing,” Front. Bioeng. Biotechnol., No. 4, 82 (2016).Google Scholar
  16. 16.
    C. D. Tran, S. Duri, and A. L. Harkins, “Recyclable synthesis, characterization and antimicrobial activity of chitozan-based polysaccharide composite materials,” J. Biomed. Mater. Res. A, No. 8, 2248 (2013). CrossRefGoogle Scholar
  17. 17.
    Yu. N. Filatov, Electroforming of Fibrous Materials (EFF-Process) (Neft’ Gaz, Moscow, 1997) [in Russian].Google Scholar
  18. 18.
    Z. Liang and J. H. Freed, “An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules,” J. Phys. Chem. B, No. 10, 6384 (1999).CrossRefGoogle Scholar
  19. 19.
    V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).CrossRefGoogle Scholar
  20. 20.
    A. M. Vasserman, A. L. Buchachenko, A. L. Kovarskii, and M. B. Neiman, “Study of molecular motion in polymers by the paramagnetic probe method,” Polymer Sci. USSR 10, 2238 (1976).CrossRefGoogle Scholar
  21. 21.
    A. V. Bychkova, A. L. Iordanskii, R. Y. Kosenko, et al., “Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery,” Nanotechnol. Russ. 10, 325 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Vyazovkin, N. Koga, and C. V. Schick, Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics (Elsevier, Amsterdam, Boston, London, 2002).Google Scholar
  23. 23.
    A. A. Ol’khov, S. G. Karpova, A. L. Iordanskii, et al., “Effect of rolling on the structure of fibrous materials based on poly-3-hydroxybutyrate and obtained by electrospinning,” Fibre Chem. 46, 317 (2015).CrossRefGoogle Scholar
  24. 24.
    S. G. Karpova, A. A. Ol’khov, et al., “Structural dynamic properties of nonwoven composite mixtures based on ultrafine tissues of poly-3-hydroxybutyrate with chitosan,” Russ. J. Phys. Chem. B 10, 687 (2016).CrossRefGoogle Scholar
  25. 25.
    S. G. Karpova, A. A. Olkhov, A. V. Bakirov, et al., “Poly-3-hydroxybutyrate matrices modified with iron(III) complexes with tetraphenylporphyrin. Analysis of the structural dynamic parameters,” Russ. J. Phys. Chem. B 12, 142 (2018).CrossRefGoogle Scholar
  26. 26.
    S. G. Karpova, A. A. Ol’khov, A. V. Krivandin, et al., “Effect of zinc-porphyrin complex on the structure and properties of poly-3-hydroxybutyrate ultrathin fibers,” Polymer Sci., Ser. A 61, 70 (2019).CrossRefGoogle Scholar
  27. 27.
    A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Phys. Chem. Inst., Moscow, 1977).Google Scholar
  28. 28.
    Y. V. Tertyshnaya and L. S. Shibryaeva, “Degradation of poly(3-hydroxybuty-rate) and its blends during treatment with UV light and water,” Polymer Sci., Ser. B 55, 164 (2013).CrossRefGoogle Scholar
  29. 29.
    P. P. Kamaev, Cand. Sci. (Chem.) Dissertation (Semenov Inst. Chem. Phys. RAS, Moscow, 2001).Google Scholar
  30. 30.
    A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, et al., “Influence of the structure and morphology of ultrathin poly-3-hydroxybutyrate fibers on the diffusion kinetics and transport of drugs,” Polymer Sci., Ser. A 59, 343 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. G. Karpova
    • 1
    Email author
  • A. A. Ol’khov
    • 1
    • 2
  • A. V. Lobanov
    • 2
    • 3
  • A. A. Popov
    • 2
  • A. L. Iordanskii
    • 3
  1. 1.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia
  3. 3.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations