Advertisement

Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 149–158 | Cite as

THE EFFECT OF 92-DAY SUBACUTE EXPOSURE TO SINGLE-WALLED CARBON NANOTUBES ON TRACE ELEMENT HOMEOSTASIS IN WISTAR RATS

  • I. V. GmoshinskiEmail author
  • A. A. Shumakova
  • V. A. Shipelin
  • A. D. Musaeva
  • A. A. Antsiferova
  • S. A. Tikhomirov
  • S. A. Khotimchenko
NANOBIOMEDICINE AND NANOPHARMACEUTICALS

Abstract

OSUNT90T® single-walled carbon nanotubes (SWCNTs) were administered with drinking water at doses of 0 (control), 0.01, 0.1, 1.0, and 10 mg/kg body weight (bw) to juvenile male Wistar rats for 100 days. The levels of 17 chemical elements (Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Mg, Mn, Ni, Pb, Se, V, and Zn) in the liver, kidneys, spleen, brain, and testes were assessed using ICP-MS. A decrease of the content of certain chemical elements, including As, Pb, Cd, Cs, and Se, in the organs of animals that received SWCNTs and an increase of vanadium (V) and silver (Ag) levels in the kidneys were detected. The absence of a dependence between most of these effects and the nanomaterial dose along with preferential manifestation of the effects at low (0.01 and 0.1 mg/kg bw) doses are indicative of a complex systemic biochemical mechanism, apparently dependent on agglomeration at high concentrations, underlying the effects of SWCNTs on element homeostasis.

Notes

FUNDING

The study was supported by the subsidy for the fulfillment of the State Assignment within the framework of the Fundamental Research Program (Ministry of Education and Science of the Russian Federation, theme 0529-2014-0053).

REFERENCES

  1. 1.
    P.-C. Maa, N. A. Siddiquia, G. Maromb, and J.-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Composites A 41, 1345 (2010).  https://doi.org/10.1016/j.compositesa.2010.07.003 CrossRefGoogle Scholar
  2. 2.
    M. F. de Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: present and future commercial applications,” Science (Washington, DC, U. S.) 339 (6119), 535 (2013).  https://doi.org/10.1126/science.1222453 CrossRefGoogle Scholar
  3. 3.
    J. C. Coyuco, Y. Liu, B.-J. Tan, and G. N. C. Chiu, “Functionalized carbon nanomaterials: exploring the interactions with caco-2 cells for potential oral drug delivery,” Int. J. Nanomed. 6, 2253 (2011).  https://doi.org/10.2147/IJN.S23962 CrossRefGoogle Scholar
  4. 4.
    F. Xu, H. Zhao, and S. D. Tse, “Carbon nanotube synthesis on catalytic metal alloys in methane/air counter flow diffusion flames,” Proc. Combust. Inst. 31, 1839 (2007).  https://doi.org/10.1016/j.proci.2006.08.062 CrossRefGoogle Scholar
  5. 5.
    S. J. Froggett, S. F. Clancy, D. R. Boverhof, and R. A. Canady, “A review and perspective of existing research on the release of nanomaterials from solid nanocomposites,” Part. Fibre Toxicol. 11, 17 (2014).  https://doi.org/10.1186/1743-8977-11-17 CrossRefGoogle Scholar
  6. 6.
    A. Mukherjee, S. Majumdar, A. D. Servin, et al., “Carbon nanomaterials in agriculture: a critical review,” Front. Plant Sci. 7, 172 (2016).  https://doi.org/10.3389/fpls.2016.00172 CrossRefGoogle Scholar
  7. 7.
    A. A. Shvedova, E. R. Kisin, R. Mercer, et al., “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice,” Am. J. Physiol. Lung Cell. Mol. Physiol. 289, 698 (2005).  https://doi.org/10.1152/ajplung.00084.2005 CrossRefGoogle Scholar
  8. 8.
    F. Benetti, L. Bregoli, I. Olivato, and E. Sabbioni, “Effects of metal(loid)-based nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology,” Metallomics 6, 729 (2014).  https://doi.org/10.1039/c3mt00167a CrossRefGoogle Scholar
  9. 9.
    A. A. Shumakova, I. V. Gmoshinsky, V. A. Shipelin, et al., “Effect of multiwalled carbon nanotubes on the microelement status in the internal organs of rats in an experiment,” Nanotechnol. Russ. 13, 189 (2018).  https://doi.org/10.1134/S1995078018020155 CrossRefGoogle Scholar
  10. 10.
    V. A. Shipelin, A. A. Shumakova, A. G. Masyutin, et al., “In vivo subacute oral toxicity assessment of multiwalled carbon nanotubes: characteristic of nanomaterial and integral indicators,” Nanotechnol. Russ. 12, 559 (2017).  https://doi.org/10.1134/S199507801705010X CrossRefGoogle Scholar
  11. 11.
    V. A. Shipelin, A. A. Shumakova, Kh. S. Soto, et al., “Influence of single-walled carbon nanotubes ingestion by rats on their integral and biochemical indices,” Gigiena Sanit. 98, 332 (2018).  https://doi.org/10.18821/0016-9900-2019-98-3-332-338 CrossRefGoogle Scholar
  12. 12.
    DELTA Professional with New Technology X-act Count. www.olympus-ims.com/ru/xrf-xrd/delta-handheld/delta-prof/.Google Scholar
  13. 13.
    B. J. Panessa-Warren, M. M. Maye, J. B. Warren, and K. M. Crosson, “Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure,” Environ. Pollut. 157, 1140 (2009).  https://doi.org/10.1016/j.envpol.2008.12.028 CrossRefGoogle Scholar
  14. 14.
    G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Concepts of nanoparticle dose metric and response metric,” Environ. Health Perspect 115, A290 (2007).  https://doi.org/10.1289/ehp.115-1892118 CrossRefGoogle Scholar
  15. 15.
    X. Cui, B. Wan, L. H. Guo, Y. Yang, and X. Ren, “Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: role of P2X7 receptor,” Environ. Sci. Technol. 50, 12473 (2016).  https://doi.org/10.1021/acs.est.6b03842 CrossRefGoogle Scholar
  16. 16.
    A. Al Faraj, F. Fauvelle, N. Luciani, et al., “In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques,” Int. J. Nanomed. 6, 351 (2011).  https://doi.org/10.2147/IJN.S16653 CrossRefGoogle Scholar
  17. 17.
    J. W. Lee, E. J. Won, H. M. Kang, et al., “Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus),” Aquat. Toxicol. 171, 9 (2016).  https://doi.org/10.1016/j.aquatox.2015.12.005 CrossRefGoogle Scholar
  18. 18.
    C. Zhang, X. Chen, L. Tan, and J. Wang, “Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae skeletonema costatum,” Environ. Sci. Pollut. Res. Int 25, 13127 (2018).  https://doi.org/10.1007/s11356-018-1580-7 CrossRefGoogle Scholar
  19. 19.
    M. H. Jang and Y. S. Hwang, “Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna,” PLoS One 13, e0194935 (2018).  https://doi.org/10.1371/journal.pone.0194935 CrossRefGoogle Scholar
  20. 20.
    R. Freitas, F. Coppola, L. de Marchi, et al., “The influence of arsenic on the toxicity of carbon nanoparticles in bivalves,” J. Hazard. Mater. 358, 484 (2018).  https://doi.org/10.1016/j.jhazmat.2018.05.056 CrossRefGoogle Scholar
  21. 21.
    X. Wang, R. Qu, A. A. Allam, et al., “Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and SS(V)] to Daphnia magna: the role of certain arsenic species,” Environ. Toxicol. Chem. 35, 1852 (2016).  https://doi.org/10.1002/etc.3340 CrossRefGoogle Scholar
  22. 22.
    J.-G. Yu, X.-H. Zhao, L.-Y. Yu, et al., “Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes,” J. Radioanal. Nucl. Chem. 299, 1155 (2014).  https://doi.org/10.1007/s10967-013-2818-y CrossRefGoogle Scholar
  23. 23.
    M. Habuda-Stanić and M. Nujić, “Arsenic removal by nanoparticles: a review,” Environ. Sci. Pollut. Res. Int. 22, 8094 (2015).  https://doi.org/10.1007/s11356-015-4307-z CrossRefGoogle Scholar
  24. 24.
    J. W. Lee, H. M. Kang, E. J. Won, et al., “Multi-walled carbon nanotubes (MWCNTs) lead to growth retardation, antioxidant depletion, and activation of the ERK signaling pathway but decrease copper bioavailability in the monogonont rotifer (Brachionus koreanus),” Aquat. Toxicol. 172, 67 (2016).  https://doi.org/10.1016/j.aquatox.2015.12.022 CrossRefGoogle Scholar
  25. 25.
    A. Alazzam, E. Mfoumou, I. Stiharu, et al., “Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells,” Nanomedicine 6, 563 (2010).  https://doi.org/10.1016/j.nano.2009.12.005 CrossRefGoogle Scholar
  26. 26.
    P. Melnikov and L. Z. Zanoni, “Clinical effects of cesium intake,” Biol. Trace Elem. Res. 135, 1 (2010).  https://doi.org/10.1007/s12011-009-8486-7 CrossRefGoogle Scholar
  27. 27.
    L. H. Ding, J. Stilwell, H. J. Zhang, et al., “Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast,” Nano Lett. 5, 2448 (2005).  https://doi.org/10.1021/nl051748o CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Gmoshinski
    • 1
    Email author
  • A. A. Shumakova
    • 1
  • V. A. Shipelin
    • 1
  • A. D. Musaeva
    • 1
  • A. A. Antsiferova
    • 2
  • S. A. Tikhomirov
    • 2
  • S. A. Khotimchenko
    • 1
    • 3
  1. 1.Federal Research Center for Nutrition and BiotechnologyMoscowRussia
  2. 2.Kurchatov Institute (National Research Center)MoscowRussia
  3. 3.Sechenov State Medical University of the Ministry of HealthcareMoscowRussia

Personalised recommendations