Advertisement

PHASE COMPOSITION STABILITY OF NANOSTRUCTURED COMPOSITE CERAMICS BASED ON CaO–ZrO2 UNDER HYDROTHERMAL IMPACT

  • 2 Accesses

Abstract

Structure, phase composition, and mechanical properties (microhardness within indenter penetration depths of 1200 nm ≤ h ≤ 6000 nm and fracture toughness) are studied on nanostructured zirconia ceramics (CaO stabilized) hardened with corundum and SiO2 during accelerated aging under hydrothermal conditions (Tag = 134°C, P = 3 atm, H = 100%, 0 ≤ tag ≤ 25 h). The use of CaO as a stabilizer of the zirconia tetragonal phase (instead of “conventional” Y2O3) promotes increasing resistance to hydrothermal effects of composite ZrO2 + Al2O3 and ZrO2 + Al2O3 + SiO2 ceramics. The reached fracture toughness (more than in 40%) via introduction of silica (\({{C}_{{{\text{Si}}{{{\text{O}}}_{2}}}}}\) = 5 mol %) increase provides a satisfactory hardness/fracture toughness (H = 12.3 GPa, KC = 6.66 MPa m1/2) ratio of the Ca–ZrO2 + Al2O3 + SiO2 composite ceramics even after its accelerated 25-h aging.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    R. C. Garvie, R. H. J. Hannink, and R. T. Pascoe, Nature (London, U.K.) 258, 703 (1975). www.nature.com/articles/258703a0.pdf.

  2. 2

    R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

  3. 3

    A. C. O. Lopes, P. G. Coelho, L. Witek, et al., Ceram. Int. 45, 8840 (2019). https://doi.org/10.1016/j.ceramint.2019.01.211

  4. 4

    A. O. Zhigachev, Yu. I. Golovin, A. V. Umrikhin, et al., Zirconia Dioxide Ceramic Materials (Tekhnosfera, Moscow, 2018) [in Russian].

  5. 5

    A. G. Evans, J. Am. Ceram. Soc. 72, 187 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06493.x

  6. 6

    M. H. Ghaemi, S. Reichert, A. Krupa, et al., Ceram. Int. 43, 9746 (2017). https://doi.org/10.1016/j.ceramint.2017.04.150

  7. 7

    A. Maji and G. Choubey, Mater. Today: Proc. 5, 7457 (2018). https://doi.org/10.1016/j.matpr.2017.11.417

  8. 8

    J.-K. Lee, M.-J. Kim, and E.-G. Lee, J. Mater. Sci. Lett. 21, 259 (2002). https://doi.org/10.1023/A:1014737614591

  9. 9

    F. Zhang, L.-F. Li, and E.-Z. Wang, Ceram. Int. 41, 12417 (2015). https://doi.org/10.1016/j.ceramint.2015.06.081

  10. 10

    A. A. Dmitrievskii, A. O. Zhigachev, D. G. Zhigacheva, and A. I. Tyurin, Tech. Phys. 64, 86 (2019). https://doi.org/10.21883/JTF.2019.01.46970.102-18

  11. 11

    A. O. Zhigachev, V. V. Rodaev, A. V. Umrikhin, and Yu. I. Golovin, Ceram. Int. 45, 627 (2019). https://doi.org/10.1016/j.ceramint.2018.09.220

  12. 12

    K. Kobayashi, H. Kuwajima, and T. Masaki, Solid State Ionics 3–4, 489 (1981). https://doi.org/10.1016/0167-2738(81)90138-7

  13. 13

    H. Schubert and F. Frey, J. Eur. Ceram. Soc. 25, 1597 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.03.025

  14. 14

    Y. Gaillard, E. Jimenez-Pique, F. Soldera, et al., Acta Mater. 56, 4206 (2008). https://doi.org/10.1016/j.actamat.2008.04.050

  15. 15

    J.-D. Lin, J.-G. Duh, and C.-L. Lo, Mater. Chem. Phys. 77, 1016 (2002). https://doi.org/10.1016/S0254-0584(02)00161-X

  16. 16

    A. O. Zhigachev and Yu. I. Golovin, Nanotechnol. Russ. 12, 400 (2017). https://nanorf.elpub.ru/jour/article/view/12/11.

  17. 17

    A. A. Dmitrievskii, D. G. Zhigacheva, A. I. Tyurin, et al., in Proceedings of the International Symposium on Perspective Materials and Technologies, May 27–31,2019,Brest,Belorussiya. http://www.issp.ac.ru/ebooks/conf/Adv.mater_2019.pdf.

  18. 18

    A. A. Dmitrievskii, A. I. Tyurin, A. O. Zhigachev, D. G. Guseva, and P. N. Ovchinnikov, Tech. Phys. Lett. 4, 141 (2018). https://doi.org/10.21883/PJTF.2018.04.45635.16933

  19. 19

    J. Chevalier, S. Deville, E. Münch, et al., Biomaterials 25, 5539 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.002

  20. 20

    A. Moradkhani and H. Baharvandi, Eng. Fract. Mech. 191, 446 (2018). https://doi.org/10.1016/j.engfracmech.2017.12.033

  21. 21

    M. P. Albano, H. L. Calambás Pulgarin, L. B. Garrido, et al., Ceram. Int. 42, 11363 (2016). https://doi.org/10.1016/j.ceramint.2016.04.063

  22. 22

    T. Kosmač and A. Kocjan, J. Eur. Ceram. Soc. 32, 2613 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.024

  23. 23

    Yu. I. Golovin, Phys. Solid State 50, 2205 (2008). http://journals.ioffe.ru/articles/viewPDF/2862.

  24. 24

    A. O. Zhigachev, A. V. Umrikhin, and Yu. I. Golovin, Ceram. Int. 41, 13804 (2015). https://doi.org/10.1016/j.ceramint.2015.08.063

  25. 25

    M. L. Mecartney, J. Am. Ceram. Soc. 70, 54 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04853.x

  26. 26

    L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, J. Am. Ceram. Soc. 85, 401 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00103.x

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.O. Zhirachev for assisting in obtaining SEM images. This work was carried out using Shared Access Center of Derzhavin Tambov State University facilities.

FUNDING

The work was supported by the Ministry of Science and Education of the Russian Federation (project no. 16.2100.2017/4.6) and partially supported by the Russian Foundation for Basic Research (project no. 18-42-680001 r-a).

Author information

Correspondence to A. A. Dmitrievskiy.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dmitrievskiy, A.A., Zhigacheva, D.G., Efremova, N.Y. et al. PHASE COMPOSITION STABILITY OF NANOSTRUCTURED COMPOSITE CERAMICS BASED ON CaO–ZrO2 UNDER HYDROTHERMAL IMPACT. Nanotechnol Russia 14, 125–131 (2019). https://doi.org/10.1134/S1995078019020058

Download citation