Advertisement

Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 165–175 | Cite as

CYTOTOXICITY STUDY OF ULTRASMALL PHOSPHONIUM GOLD NANOPARTICLES USING PLANT AND ANIMAL CELL CULTURES

  • D. S. Chumakov
  • T. E. Pylaev
  • E. S. Avdeeva
  • L. A. Dykman
  • N. G. Khlebtsov
  • V. A. BogatyrevEmail author
NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • 5 Downloads

Abstract—The biocompatibility of ultrasmall colloidal gold nanoparticles seems an important problem due to their expanding range of biomedical and technical applications every year. According to most studies, this type of nanoparticle is toxic to living organisms. However, it is not clear which particular component of the colloidal system exhibits toxicity: whether it is associated with the particles themselves or with the dispersion medium. Also, the mechanism of the toxic effect is not clear. Solving this problem goes hand in hand with identifying the source of toxicity in the preparation of ultrasmall phosphonium gold nanoparticles, obtained by the Duff method using the following cell test systems: microalgae cultures of Dunaliella salina and animal cell cultures of the HeLa and Vero lines. Nanoparticles washed three times of the medium were not toxic to animal cells and were slightly toxic to D. salina. It was found that the toxicity of the preparation of ultrasmall phosphonium gold nanoparticles is controlled by the toxicity of the dispersion medium; it can be assumed that complex-ionic forms of gold are the main source of toxicity in the dispersion medium.

Notes

ACKNOWLEDGMENTS

The authors are grateful to A.M. Burov, senior researcher at the Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, for help in performing electron microscopy studies.

FUNDING

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-04-00469).

REFERENCES

  1. 1.
    E. C. Dreaden, A. M. Alkilany, X. Huang, et al., “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740 (2012).CrossRefGoogle Scholar
  2. 2.
    N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40, 1647 (2011).CrossRefGoogle Scholar
  3. 3.
    X. Jiang, B. Du, Y. Huang, and J. Zheng, “Ultrasmall noble metal nanoparticles: breakthroughs and biomedical implications,” Nano Today 21, 106 (2018).CrossRefGoogle Scholar
  4. 4.
    D. Cassano, S. Pocovi-Martinez, and V. Violani, “Ultrasmall-in-nano approach: enabling the translation of metal nanomaterials to clinics,” Bioconjug. Chem. 29, 4 (2018).CrossRefGoogle Scholar
  5. 5.
    M. Yu, J. Liu, X. Ning, and J. Zheng, “High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores,” Angew. Chem., Int. Ed. Engl. 54, 15434 (2015).CrossRefGoogle Scholar
  6. 6.
    F. Zhou, B. Feng, H. Yu, et al., “Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer,” Theranostics 6, 679 (2016).CrossRefGoogle Scholar
  7. 7.
    S. K. Boda, J. Broda, F. Schiefer, et al., “Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive staphylococci,” Small 26, 3183 (2015).CrossRefGoogle Scholar
  8. 8.
    A. M. Alkilany and C. J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?,” J. Nanopart. Res. 12, 2313 (2010).CrossRefGoogle Scholar
  9. 9.
    G. Schmid, R. Pfeil, R. Boese, et al., “Au55[P(C6H5)3]12Cl6-ein Goldcluster ungewöhnliche Größe,” Chem. Ber. 114, 3634 (1981).CrossRefGoogle Scholar
  10. 10.
    Y. Pan, S. Neuss, A. Leifert, et al., “Size dependent cytotoxicity of gold nanoparticles,” Small 3, 1941 (2007).CrossRefGoogle Scholar
  11. 11.
    Y. Pan, A. Leifer, D. Ruau, et al., “Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage,” Small 5, 2067 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Pan, A. Leifert, M. Graf, et al., “High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing zebrafish,” Small 9, 863 (2012).CrossRefGoogle Scholar
  13. 13.
    G. Schmid, W. G. Kreyling, and U. Simon, “Toxic effects and biodistribution of ultrasmall gold nanoparticles,” Arch. Toxicol. 91, 3011 (2017).CrossRefGoogle Scholar
  14. 14.
    D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301 (1993).CrossRefGoogle Scholar
  15. 15.
    C. Loo, A. Lin, L. Hirsch, et al., “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treatm. 3, 33 (2004).CrossRefGoogle Scholar
  16. 16.
    J. L. Hueso, V. Sebastian, A. Mayoral, et al., “Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys,” RSC Adv. 3, 10427 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Oren, “The ecology of dunaliella in high-salt environments,” J. Biol. Res. 21, 23 (2014).Google Scholar
  18. 18.
    N. P. Masyuk, Morphology, Systematics, Ecology, Geographical Distribution of the Dunaliella teod. Genus and Prospects for its Practical Use (Naukova dumka, Kiev, 1973) [in Russian].Google Scholar
  19. 19.
    V. A. Bogatyrev, A. A. Golubev, N. Yu. Selivanov, A. Yu. Prilepskii, O. G. Bukina, T. E. Pylaev, O. A. Bibikova, L. A. Dykman, and N. G. Khlebtsov, “Laboratory test system for the evaluation of nanomaterial toxicity on Dunaliella salina microalgae,” Nanotechnol. Russ. 10, 109 (2015).CrossRefGoogle Scholar
  20. 20.
    A. A. Golubev, A. Y. Prilepskii, L. A. Dykman, et al., “Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity,” Toxicol. Sci. 151, 115 (2016).CrossRefGoogle Scholar
  21. 21.
    S. T. Zakhidov, S. M. Pavlyuchenkova, A. V. Samoylov, N. M. Mudzhiri, T. L. Marshak, V. M. Rudoy, O. V. Dement’eva, I. A. Zelenina, S. G. Skuridin, and Yu. M. Yevdokimov, “Bovine sperm chromatin is not protected from the effects of ultrasmall gold nanoparticles,” Biol. Bull. 40, 493 (2013).CrossRefGoogle Scholar
  22. 22.
    S. T. Zakhidov, V. M. Rudoy, O. V. Dement’eva, N. M. Mudzhiri, N. V. Makarova, I. A. Zelenina, L. E. Andreeva, and T. L. Marshak, “Effect of ultrasmall gold nanoparticles on the murine native sperm chromatin,” Biol. Bull. 42, 479 (2015).CrossRefGoogle Scholar
  23. 23.
    S. T. Zakhidov, N. M. Mudzhiri, V. M. Rudoy, O. V. Dement’eva, A. A. Makarov, I. A. Zelenina, and T. L. Marshak, “Gold nanoparticles: mutagen, antimutagen, or comutagen?,” Biol. Bull. 44, 233 (2017).CrossRefGoogle Scholar
  24. 24.
    N. M. Mudzhiri, S. T. Zakhidov, V. M. Rudoy, O. V. Dement’eva, A. A. Makarov, I. V. Makarova, I. A. Zelenina, L. E. Andreeva, and T. L. Marshak, “Cytogenetic activity of gold nanoparticles in germ and somatic cells of 129 mice with a nonsense mutation in the DNA polymerase iota gene,” Biol. Bull. 45, 119 (2018).CrossRefGoogle Scholar
  25. 25.
    A. Kedia and P. S. Kumar, “Controlled reshaping and plasmon tuning mechanism of gold nanostars,” J. Mater. Chem. C 1, 4540 (2013).CrossRefGoogle Scholar
  26. 26.
    W. Ahmed, A. S. Bhatti, and J. M. van Ruitenbeek, “Efficient seed-mediated method for the large-scale synthesis of Au nanorods,” J. Nanopart. Res. 19, 115 (2017).CrossRefGoogle Scholar
  27. 27.
    N. H. A. Nguyen, V. V. T. Padil, V. I. Slaveykova, et al., “Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas Reinhardtii,” Nanoscale Res. Lett. 13, 159 (2018).CrossRefGoogle Scholar
  28. 28.
    N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Mel’nikov, “Light absorption by the clusters of colloidal gold and silver particles formed during slow and fast aggregation,” Colloid. J. 62, 765 (2000).CrossRefGoogle Scholar
  29. 29.
    D. C. Chumakov, A. A. Golubev, L. A. Dykman, N. G. Khlebtsov, and V. A. Bogatyrev, “Optical assessment of Dunaliella salina microalgae viability upon toxicological testing,” Colloid. J. 79, 844 (2017).CrossRefGoogle Scholar
  30. 30.
    A. M. Alkilany, P. K. Nagaria, C. R. Hexel, et al., “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5, 701 (2009).CrossRefGoogle Scholar
  31. 31.
    K. Niska, K. Pyszka, C. Tukaj, et al., “Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells,” Int. J. Nanomed. 10, 1095 (2015).Google Scholar
  32. 32.
    M. Afifi, S. Saddick, and O. A. Abu Zinada, “Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii,” Saudi J. Biol. Sci. 23, 754 (2016).CrossRefGoogle Scholar
  33. 33.
    O. V. Dement’eva, M. E. Kartseva, V. M. Sukhov, and V. M. Rudoy, “Evolution of ultrafine gold seed nanoparticles with temperature and time and synthesis of plasmonic nanoshells,” Colloid. J. 79, 605 (2017).CrossRefGoogle Scholar
  34. 34.
    C. Corbo, R. Molinaro, A. Parodi, et al., “The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery,” Nanomedicine 11, 81 (2016).CrossRefGoogle Scholar
  35. 35.
    R. Moravčik, M. Okuliarová, E. Kováčová, and M. Zeman, “Diquat-induced cytotoxicity on vero and HeLa cell lines: effect of melatonin and dihydromelatonin,” Interdiscip. Toxicol. 7, 184 (2015).CrossRefGoogle Scholar
  36. 36.
    F. Tugba Artun, A. Karagoz, G. Ozcan, et al., “In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and vero cell lines,” J. BUON 21, 720 (2016).Google Scholar
  37. 37.
    A. Bindoli, M. Rigobello, G. Scutari, et al., “Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs,” Coord. Chem. Rev. 253, 1692 (2009).CrossRefGoogle Scholar
  38. 38.
    T. Zou, C. T. Lum, C. N. Lok, et al., “Chemical biology of anticancer gold(III) and gold(I) complexes,” Chem. Soc. Rev. 44, 8787 (2015).Google Scholar
  39. 39.
    T. S. Reddy, S. H. Priver, V. V. Rao, et al., “Gold(I) and gold(III) phosphine complexes: synthesis, anticancer activities towards 2D and 3D cancer models, and apoptosis inducing properties,” Dalton Trans. 47, 15312 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. S. Chumakov
    • 1
  • T. E. Pylaev
    • 1
  • E. S. Avdeeva
    • 1
  • L. A. Dykman
    • 1
  • N. G. Khlebtsov
    • 1
  • V. A. Bogatyrev
    • 1
    Email author
  1. 1.Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of SciencesSaratovRussia

Personalised recommendations