Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 98–103 | Cite as


  • E. A. Bogoslov
  • M. P. DanilaevEmail author
  • S. V. Drobyshev
  • V. A. Kuklin
  • M. S. Pudovkin

Abstract—We study the formation mechanism of carbon nanoparticles with simultaneous formation of a polystyrene film in a AC barrier corona discharge at atmospheric pressure. The importance of the research stems from the need to control the allotropic form of carbon nanoparticles, which affects the physical and technical characteristics of polymer films obtained by this method. It is shown that nucleation of polycrystalline onion-like carbon nanoparticle agglomerates is the basis for graphene flake formation in the corona sheath. Graphene flakes form from these nucleation sites in gas discharge streamers owing to the destruction of monomer molecules remaining in the agglomerates of nucleation sites. It was revealed that the allotropic form of such particles is determined not only by the energy—in this case the barrier corona discharge—but also by the ratio of the duration of its exposure to the characteristic destruction and formation times of covalent bonds participating in the particle process.



The study was supported by the Russian Foundation for Basic Research (project no. 18-48-160024) and partially (spectroscopy) by subsidies allocated to Kazan Federal University under the state task for scientific activity (3.1156.2017/4.6, 3.5835.2017/6.7).


  1. 1.
    Rakesh Kumar, Polymer-Matrix Composites(Types, Applications, and Performance) (Nova Science, New York, 2014).Google Scholar
  2. 2.
    Farzana Hussain and Mehdi Hojjati, “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” J. Compos. Mater. 40, 1511 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Zhandarov, E. Mader, Ch. Scheffler, et al., “Investigation of interfacial strength parameters in polymer matrix composites: compatibility and reproducibility,” Adv. Ind. Eng. Polym. Res., No. 1, 82 (2018).CrossRefGoogle Scholar
  4. 4.
    V. V. Chesnokov, A. S. Chichkan’, and V. N. Parmon, “Nanoporous ceramic membranes modified by carbon nanotubes used to separate gaseous mixtures,” Nanotechnol. Russ. 12, 165 (2017).CrossRefGoogle Scholar
  5. 5.
    I. A. Mansurova, O. Yu. Isupova, A. A. Burkov, A. A. Alalykin, S. V. Kondrashov, I. B. Shilov, and E. Yu. Kraeva, “Functionalization of 1D carbon nanostructures by components of curing system and their influence on the properties of the vulcanizates,” Nanotechnol. Russ. 11, 603 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Y. Lone, A. Kumar, S. Husain, et al., “Growth of carbon nanotubes by PECVD and its applications: a review,” Curr. Nanosci. 13, 536 (2017).CrossRefGoogle Scholar
  7. 7.
    N. Arora and N. N. Sharma, “Arc discharge synthesis of carbon nanotubes: comprehensive review,” Diamond Relat. Mater. 50, 135 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Moutab Sahihazar, M. Nouri, M. Rahmani, et al., “Fabrication of carbon nanoparticle strand under pulsed arc discharge,” Plasmonics 13, 2377 (2018).CrossRefGoogle Scholar
  9. 9.
    V. A. Ryzhkov, “Mechanism of carbon nanotube growth in arc-discharge,” Carbon—Sci. Tech., No. 1, 2 (2008).Google Scholar
  10. 10.
    Muhammad Sufi Roslan, Misbahul Muneer Abd Rahma, et al., “Fullerene-to-MWCNT structural evolution synthesized by arc discharge plasma,” J. Carbon Res., No. 4, 1 (2018).Google Scholar
  11. 11.
    E. A. Bogoslov, M. P. Danilaev, Yu. E. Pol’skii, et al., “Formation of polystyrene film in gas discharge plasma at atmospheric pressure,” Fiz. Khim. Obrab. Mater., No. 2, 23 (2016).Google Scholar
  12. 12.
    G. Raniszewski, S. Wiak, L. Pietrzak, et al., “Influence of plasma jet temperature profiles in arc discharge methods of carbon nanotubes synthesis,” Nanomaterials (Basel) 7 (3) (2017). CrossRefGoogle Scholar
  13. 13.
    O. Y. Bogomolova, I. R. Biktagirova, M. P. Danilaev, et al., “Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxy-resin-based compositions,” Mech. Compos. Mater. 53, 117 (2017).CrossRefGoogle Scholar
  14. 14.
    R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373 (2012).CrossRefGoogle Scholar
  15. 15.
    Q.-Y. Chen, J. Gao, K. Dai, et al., “Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils,” Chin. J. Polym. Sci. 31, 211 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Scordo, V. Bertana, L. Scaltrito, et al., “A novel highly electrically conductive composite resin for stereolithography,” Mater. Today Commun. 19, 12 (2019).CrossRefGoogle Scholar
  17. 17.
    N. Sano, H. Wang, I. Alexandrou, et al., “Properties of carbon onions produced by an arc discharge in water,” J. Appl. Phys. 92, 2783 (2002).CrossRefGoogle Scholar
  18. 18.
    R. Hu, M. A. Ciolan, X. Wang, et al., “Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism,” Nanotechnology 27, 1 (2016).Google Scholar
  19. 19.
    P. V. Borisoglebskii, L. F. Dmokhovskaya, V. P. Larionov, et al., High Voltage Technique (Gosenergoizdat, Moscow, 1963) [in Russian].Google Scholar
  20. 20.
    G. N. Aleksandrov, V. V. Borisov, and G. S. Kaplan, Theory of Electrical Apparatus (SPbGTU, St. Petersburg, 2000) [in Russian].Google Scholar
  21. 21.
    Graphene—Synthesis, Characterization, Properties, and Applications,  Ed. by Jian Ru Gong (InTech Janeza Trdine, Croatia, 2011).Google Scholar
  22. 22.
    M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Dover, New York, 2009; Regulyar. Khaot. Dinamika, Izhevsk, 2005).Google Scholar
  23. 23.
    B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982; Inst. Komp. Issled., Moscow, 2002).Google Scholar
  24. 24.
    V. V. Afanas’ev, M. P. Danilaev, and Yu. E. Pol’skii, “Physical fractals, structures, modes,” Nelin. Mir, No. 2, 110 (2008).Google Scholar
  25. 25.
    M. Szerencsi and G. Radnoczi, “The mechanism of growth and decay of carbon nano-onions formed by ordering of amorphous particles,” Vacuum 84, 197 (2010).CrossRefGoogle Scholar
  26. 26.
    J. F. Peter, “Harris transmission electron microscopy of carbon: a brief history,” J. Carbon Res., No. 4, 1 (2018).Google Scholar
  27. 27.
    K. Bogdanov, F. Fedorov, V. Osipov, et al., “Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies,” Carbon 73, 78 (2014).CrossRefGoogle Scholar
  28. 28.
    U. Müller, Symmetry Relationships between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry (Oxford Univ. Press, UK, 2013).CrossRefGoogle Scholar
  29. 29.
    C. Meyer Jannik, A. K. Geim, M. I. Katsnelson, et al., “The structure of suspended grapheme sheets,” Nature (London, U.K.) 446 (7131), 60 (2007).CrossRefGoogle Scholar
  30. 30.
    V. E. Cosslett, “Recent progress in high voltage electron microscopy,” in Modern Diffraction and Imaging Techniques in Materials Science, Ed. by S. Amelinckx (North Holland, Amsterdam, 1970), p. 341.Google Scholar
  31. 31.
    M. P. Danilaev, E. M. Zueva, E. A. Bogoslov, M. S. Pudovkin, and Yu. E. Pol’skii, “Formation mechanism of argon clathrates with carbon dendrites,” Tech. Phys. 63, 857 (2018).CrossRefGoogle Scholar
  32. 32.
    S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, “Peculiarities of the corona discharge in air,” Tech. Phys. 53, 848 (2008).CrossRefGoogle Scholar
  33. 33.
    D. Kozak, E. Shibata, A. Iizuka, and T. Nakamura, “Growth of carbon dendrites on cathode above liquid ethanol using surface plasma,” Carbon 70, 87 (2014).CrossRefGoogle Scholar
  34. 34.
    T. S. Kol’tsova, T. V. Larionova, N. N. Shusharina, and O. V. Tolochko, Tech. Phys. 60, 1214 (2015).CrossRefGoogle Scholar
  35. 35.
    K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, “Investigation of spark discharge dynamics in an air-filled point-plane gap by shadow photography,” Tech. Phys. 64, 61 (2019).CrossRefGoogle Scholar
  36. 36.
    K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, “Microstructure of a spark discharge in air in a point–plane gap,” Tech. Phys. 63, 801 (2018).CrossRefGoogle Scholar
  37. 37.
    Yu. K. Stishkov, A. V. Samusenko, and I. A. Ashikhmin, “Corona discharge and electrogasdynamic flows in the air,” Phys. Usp. 61, 1213 (2018).CrossRefGoogle Scholar
  38. 38.
    H. Haken, Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices (Springer, Heidelberg, 1983).Google Scholar
  39. 39.
    W. Ebeling, Origin of Structures at Irreversible Processes: Introduction in the Theory of Dissipative Structures (Rostock, 1977).Google Scholar
  40. 40.
    I. Prigogine, The End of Certainty: Time, Chaos, and the New Laws of Nature (The Free Press, New York, 1997).Google Scholar
  41. 41.
    O. G. Kiselev, A. B. Berezin, F. E. Maiers, et al., “Methods of fullerene extraction,” RF Patent No. 2272784, Byull. Izobret., No. 9 (2006), p. 37.Google Scholar
  42. 42.
    V. S. Pavlovich and E. M. Shpilevskii, “Absorption and fluorescence spectra of C60 fullerene concentrated solutions in hexane and polystyrene at 77–300 K,” J. Appl. Spectrosc. 77, 335 (2010).CrossRefGoogle Scholar
  43. 43.
    S. Leach, M. Vervloet, A. Despres, et al., “Electronic spectra and transitions of the fullerene C60,” Chem. Phys. 160, 451 (1992).CrossRefGoogle Scholar
  44. 44.
    A. Cohen, J. Lundell, and R. B. Gerber, “First compounds with argon-carbon and argon-silicon chemical bonds,” J. Chem. Phys. 119, 6415 (2003).CrossRefGoogle Scholar
  45. 45.
    M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New Jersey, 2005).CrossRefGoogle Scholar
  46. 46.
    Laser Reference Book, Ed. by A. M. Prokhorov (Sov. Radio, Moscow, 1978), Vol. 1 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Bogoslov
    • 1
  • M. P. Danilaev
    • 1
    Email author
  • S. V. Drobyshev
    • 1
  • V. A. Kuklin
    • 1
    • 2
  • M. S. Pudovkin
    • 2
  1. 1.Tupolev Kazan National Research Technical University—KAIKazanRussia
  2. 2.Kazan Federal UniversityKazanRussia

Personalised recommendations