Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 372–377 | Cite as

Influence of the Size of Nanoparticles and Their Agglomerates on the Physicomechanical Properties of Epoxynanocomposites

  • I. D. Simonov-Emel’yanov
  • A. A. PykhtinEmail author
  • K. A. Mikhal’chenko
Constructive Nanomaterials


In this work, the relations between the parameters of the structure of epoxy nanodisperions and nanocomposites and a complex of physicomechanical properties of epoxynanocomposites upon the distribution of nanoparticles on nano- and microlevels are established. It is shown that the morphology of epoxy nanocomposites and the size of agglomerates in an epoxy oligomer are almost unchanged during hardening upon the transition of a binder from liquid to solid state (matrix) both on the nanolevel (to ~100 nm) and on the microlevel (to ~390 nm). It is found for the first time that the optimal physicochemical properties are achieved for nanodispersions and nanocomposites only upon the formation of agglomerates of nanoparticles 150–200 nm in size in the structure of epoxynanocomposites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. T. Kakhramanov, A. G. Azizov, V. S. Osipchik, U. M. Mamedli, and N. B. Arzumanova, “Nanostructured composites and polymeric materials technology,” Plast. Massy, Nos. 1–2, 49–57 (2016).Google Scholar
  2. 2.
    E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, “Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes,” Russ. Chem. Rev. 79, 945 (2010).CrossRefGoogle Scholar
  3. 3.
    E. N. Kablov, S. V. Kondrashov, and G. Yu. Yurkov, “Prospects of using carbonaceous nanoparticles in binders for polymer composites,” Nanotechnol. Russ. 8, 163 (2013).CrossRefGoogle Scholar
  4. 4.
    E. A. Novikovskii, “Modification of epoxy compositions with ultrafine carbon particles of thermal and detonation synthesis,” Cand. Sci. Dissertation (Polzunov Altai State Tech. Univ., Barnaul, 2017).Google Scholar
  5. 5.
    D. Yu. Shitov, T. P. Kravchenko, Yu. M. Budnitskii, Z. N. Nei, and V. S. Osipchik, “Polyolefin-based nanocomposites,” Plast. Massy, Nos. 3–4, 9–12 (2015).Google Scholar
  6. 6.
    S. A. Larionov, I. S. Deev, G. N. Petrova, and E. Ya. Beider, “Effect of carbon fillers on the electrophysical, mechanical and rheological properties of polyethylene,” Tr. VIAM, No. 9, 04 (2013).Google Scholar
  7. 7.
    S. V. Kondrashov, K. A. Shashkeev, O. V. Popkov, and L. V. Solov’yanchik, “Promising technologies for obtaining functional materials of structural designation based on nanocomposites with CNT (review),” Tr. VIAM, No. 3, 07 (2016).CrossRefGoogle Scholar
  8. 8.
    Polymer Nanocomposites, Ed. by Yiu-Wing May and Zhong-Zhen Yu (CRC, Boca Raton, FL, 2006).Google Scholar
  9. 9.
    R. V. Akatenkov, V. N. Aleksashin, I. V. Anoshkin, A. N. Babin, V. A. Bogatov, V. P. Grachev, S. V. Kondrashov, V. T. Minakov, and E. G. Rakov, “Effect of small amounts of functionalized nanotubes on the physicomechanical properties and structure of epoxy compositions,” Deform. Razrush. Mater., No. 11, 22–24 (2011).Google Scholar
  10. 10.
    G. M. Gunyaev, E. N. Kablov, and V. M. Aleksashin, “Modification of structural carbon plastics with carbon nanoparticles,” Ross. Khim. Zh. 54 (1), 5–11 (2010).Google Scholar
  11. 11.
    A. A. Pykhtin and I. D. Simonov-Emel’yanov, “Technological properties of nanodispersions based on DER-330 epoxy resin and WS-50 fumed silica,” Tonk. Khim. Tekhnol. 11 (4), 63–67 (2016).Google Scholar
  12. 12.
    I. D. Simonov-Emel’yanov, A. A. Pykhtin, S. A. Smotrova, and A. N. Kovaleva, “Structure formation and physico-mechanical characteristics of epoxy nanocomposites,” Vse Mater. Entsikl. Spravochnik, No. 2, 2–7 (2017).Google Scholar
  13. 13.
    V. I. Klenin, S. Yu. Shchegolev, and V. I. Lavrushin, Characteristic Functions of Light Scattering of Dispersion Systems (Sarat. Gos. Univ., Saratov, 1977) [in Russian].Google Scholar
  14. 14.
    E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry, The School-Book for Higher Schools (Khimiya, Moscow, 2004) [in Russian].Google Scholar
  15. 15.
    S. Yu. Kudryashov and L. A. Onuchak, Colloid Chemistry, The Practical Guide (Univers-grupp, Samara, 2006) [in Russian].Google Scholar
  16. 16.
    V. M. Luk’yanovich, Electro Microscopy in Physicochemical Studies (Akad. Nauk SSSR, Moscow, 1960), pp. 90–116 [in Russian].Google Scholar
  17. 17.
    I. D. Simonov-Emel’yanov, “Building structures in dispersion-filledpolymers and properties of composite materials,” Plast. Massy, Nos. 9–10, 29–36 (2015).Google Scholar
  18. 18.
    N. N. Trofimov and M. Z. Kanovich, Durability and Reliability of Composites (Nauka, Moscow, 2014) [in Russian].Google Scholar
  19. 19.
    D. Paul and S. Newman, Polymer Blends (Academic, San Diego, CA, 1978), Vol. 2.CrossRefGoogle Scholar
  20. 20.
    V. N. Kuleznev, Polymer Blends and Alloys (Nauch. Osnovy Tekhnol., St. Petersburg, 2013) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. D. Simonov-Emel’yanov
    • 1
  • A. A. Pykhtin
    • 2
    Email author
  • K. A. Mikhal’chenko
    • 1
  1. 1.MIREA Russian Technological UniversityMoscowRussia
  2. 2.Russian Scientific Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations