Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 378–383 | Cite as

The Effect of the Increase in Impact Strength of Epoxy Composites by Agglomerated Nanoparticles

  • A. A. PykhtinEmail author
  • I. D. Simonov-Emel’yanov
  • K. A. Mikhal’chenko
Constructive Nanomaterials
  • 6 Downloads

Abstract

The influence of WS-120 white soot nanoparticles and ultrafine particles of powdered quartz (brand A) with the same chemical nature (SiO2) and size (diameter of ~150 nm) on the structure and impact strength of dispersedly filled epoxy polymers is elucidated. This is the first time that agglomerates of white soot nanoparticles with sizes of ~150 nm at their optimal concentration have been shown to almost double the impact strength of epoxy polymers, while its initial value under the effect of monolithic ultrafine particles of powdered quartz with ~150-nm particles gains only ~20%. Agglomerates of nanoparticles with optimal dimensions are found to be much more efficient for increasing the impact strength of epoxy dispersed systems in comparison with monolithic ultrafine particles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Pykhtin, “High-tech epoxy nanodispersions and nanocomposites with adjustable structure and property complex,” Cand. Sci. Dissertation (Mosc. State Technol. Univ., Moscow, 2017) [in Russian].Google Scholar
  2. 2.
    P. M. Ajayan, S. Schadler, and P. V. Braun, Nanocomposite Science and Technology (Wiley-VCH, London, 2003).CrossRefGoogle Scholar
  3. 3.
    D. Paul and S. Newman, Polymer Blends (Academic, San Diego, CA, 1978), Vol. 2.CrossRefGoogle Scholar
  4. 4.
    V. N. Kuleznev, Polymer Blends and Alloys (Nauch. Osnovy Tekhnol., St. Petersburg, 2013) [in Russian].Google Scholar
  5. 5.
    N. N. Trofimov and M. Z. Kanovich, Durability and Reliability of Composites (Nauka, Moscow, 2014) [in Russian].Google Scholar
  6. 6.
    Polymer Nanocomposites, Ed. by Yiu-Wing May and Zhong-Zhen Yu (CRC, Boca Raton, FL, 2006).Google Scholar
  7. 7.
    P. S. Marakhovskii, S. V. Kondrashov, R. V. Akatenkov, V. M. Aleksashin, I. V. Anoshkin, and I. A. Mansurova, “Modification of heat-resistant epoxy resins by carbon nanotubes,” Vestn. MGTU im. N. E. Baumana, Ser. Mashinostr., No. 2, 118–127 (2015).Google Scholar
  8. 8.
    N. T. Kakhramanov, A. G. Azizov, V. S. Osipchik, U. M. Mamedli, and N. B. Arzumanova, “Nanostructured composites and polymer science of materials,” Plast. Massy, Nos. 1–2, 49–57 (2016).Google Scholar
  9. 9.
    R. V. Akatenkov, V. N. Aleksashin, I. V. Anoshkin, A. N. Babin, V. A. Bogatov, V. P. Grachev, S. V. Kondrashov, V. T. Minakov, and E. G. Rakov, “Effect of small amounts of functionalized nanotubes on the physicomechanical properties and structure of epoxy compositions,” Deform. Razrush. Mater., No. 11, 22–24 (2011).Google Scholar
  10. 10.
    S. Swain, R. A. Sharma, S. Bhattacharya, and L. Chaudhary, “Effects of nano-silica/Nano-alumina on mechanical and physical properties of polyurethane composites and coatings,” Trans. Electr. Electron. Mater. 14, 1–8 (2013).CrossRefGoogle Scholar
  11. 11.
    F. Fangqiang, X. Zhengbin, L. Qingying, L. Zhong, and Ch. Huanqin, “ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix,” Mater. Prod. Eng. Chin. J. Chem. Eng. 21, 113–120 (2013).CrossRefGoogle Scholar
  12. 12.
    M. A. Ahmed and M. I. Ebrahim, “Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin,” World J. Nano Sci. Eng. 4, 50–57 (2014).CrossRefGoogle Scholar
  13. 13.
    G. M. Gunyaev, L. V. Chursova, O. A. Komarova, A. E. Raskutin, and A. G. Gunyaeva, “Structural polymer carbon nanocomposites -a new direction in materials science,” Vse Mater. Entsikl. Spravochnik, No. 12, 2–9 (2011).Google Scholar
  14. 14.
    G. M. Gunyaev, E. N. Kablov, and S. I. Il’chenko, “Nano-modified carbon plastics with increased fracture toughness,” in Proceedings of the Conference on the Theory and Practice of Production Technologies of Products Made of Composite Materials and New Metal Alloys TPKMM-2006 (Znanie, Moscow, 2006), pp. 88–98.Google Scholar
  15. 15.
    I. D. Simonov-Emel’yanov, A. A. Pykhtin, and A. N. Kovaleva, “Residual stresses in nanocomposites in curing epoxy oligomers,” Nanotechnol. Russ. 11, 801–804 (2016).CrossRefGoogle Scholar
  16. 16.
    A. A. Pykhtin and I. D. Simonov-Emel’yanov, “Technological properties of nanodispersions based on DER-330 epoxy resin and WS-50 fumed silica,” Tonk. Khim. Tekhnol. 11 (4), 63–67 (2016).Google Scholar
  17. 17.
    V. I. Klenin, S. Yu. Shchegolev, and V. I. Lavrushin, Characteristic Functions of Dispersion of Dispersion Systems (Sarat. Gos. Univ., Saratov, 1977) [in Russian].Google Scholar
  18. 18.
    E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry, The School-Book for Higher Schools (Khimiya, Moscow, 2004) [in Russian].Google Scholar
  19. 19.
    S. Yu. Kudryashov and S. Yu. Onuchak, Colloid Chemistry, Practical Guide (Univers-grupp, Samara, 2006) [in Russian].Google Scholar
  20. 20.
    V. M. Luk’yanovich, Electron Microscopy in Physicochemical Studies (Akad. Nauk SSSR, Moscow, 1960), pp. 90–116 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Pykhtin
    • 1
    Email author
  • I. D. Simonov-Emel’yanov
    • 2
  • K. A. Mikhal’chenko
    • 2
  1. 1.Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  2. 2.MIREA Russian Technological UniversityMoscowRussia

Personalised recommendations