Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 365–371 | Cite as

Catalytic Conversion of Propanol-1 and Propanol-2 on Lithium–Zirconium Phosphates with NASICON Structure

  • A. B. Ilyin
  • M. M. Ermilova
  • N. V. Orekhova
  • A. B. YaroslavtsevEmail author
Functional Nanomaterials
  • 7 Downloads

Abstract

The catalytic activity of complex phosphates of the NASICON structure (composition Li1 ± xZr2–xMx(P1–хMoхO4)3 and HZr2(PO4)3) with the heterovalent substitution of zirconium for indium and niobium or phosphorus for molybdenum and with a particle size of 50–300 nm is studied in transformations of primary and secondary propanols. Heterovalent doping is shown to be prevalent in its effect on the activity and selectivity of catalysts obtained due to both a change in acidity and the redox properties of compounds. A significant difference in the activities of dehydration and dehydrogenation reactions between primary and secondary alcohols is found which is associated with the steric difficulties of these processes. The conversion of propanol-1 and propanol-2 depending on LiZr2(PO4)3, Li0.5Zr1.5Nb0.5(PO4)3, and HZr2(PO4)3 catalysts results in 100% selectivity according to propene. Doping with indium results in approximately 75% selectivity according to propanal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Li, P. S. Bhadury, A. Riisager, and S. Yang, “Onepot transformation of polysaccharides via multi-catalytic processes,” Catal. Sci. Technol. 4, 4138–4168 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. C. Sharma, A. Kumar, R. Prasad, and S. N. Upadhyay, “Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategy to minimize carbonaceous deactivation,” Renew. Sust. Energy Rev. 74, 89–103 (2017).CrossRefGoogle Scholar
  3. 3.
    D. Kulkarni and I. E. Wachs, “Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies,” Appl. Catal., A 237, 121–137 (2002).CrossRefGoogle Scholar
  4. 4.
    M. Pica, “Zirconium phosphate catalysts in the XXI century: state of the art from 2010 to date,” Catalysts 7, 190–208 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Aboulayt, T. Onfroy, A. Travert, and G. Clet, “Relationship between phosphate structure and acid-base properties of phosphate-modified zirconia—application to alcohol dehydration,” Appl. Catal., A 530, 193–202 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Khanmohammadi, Sh. Amani, A. B. Garmarudi, and A. Niaei, “Methanol-to-propylene process: perspective of the most important catalysts and their behavior,” Chin. J. Catal. 37, 325–339 (2016).CrossRefGoogle Scholar
  7. 7.
    T. T. N. Nguyen, V. Ruaux, L. Massin, C. Lorentz, P. Afanasiev, F. Maugé, V. Bellière-Baca, P. Rey, and J. M. M. Milleta, “Synthesis, characterization, and study of lanthanum phosphates as light alcohols dehydration catalysts,” Appl. Catal., B 166–167, 432–444 (2015).Google Scholar
  8. 8.
    A. B. Yaroslavtsev and I. A. Stenina, “Complex phosphates with the NASICON structure (MxA2(PO4)3),” Russ. J. Inorg. Chem. 51, S97–S116 (2006).Google Scholar
  9. 9.
    V. I. Pet’kov, “Complex phosphates formed by metal cations in oxidation states I and IV,” Russ. Chem. Rev. 81, 606–637 (2012).CrossRefGoogle Scholar
  10. 10.
    H. Kohler and H. Schulz, “NASICON solid electrolytes. Part I: the Na+ diffusion path and its relation to the structure,” Mater. Res. Bull. 20, 1461–1471 (1985).CrossRefGoogle Scholar
  11. 11.
    A. Serghini, R. Brochu, M. Ziyad, and J. Vedrine, “Behaviour of copper-zirconium nasicon-type phosphate Cu1Zr2(PO4)3 in decomposition of isopropylic alcohol,” J. Chem. Soc., Faraday Trans. 87, 2487–2491 (1991).CrossRefGoogle Scholar
  12. 12.
    S. Arsalane, M. Kacimi, M. Ziyad, G. Coudurier, and J. C. Vedrin, “Behaviuor of copper-thorium phosphate CuTh2(PO4)3 in butan-2-ol conversion,” Appl. Catal., A 114, 243–256 (1994).CrossRefGoogle Scholar
  13. 13.
    Y. Brik, M. Kacimi, F. Bozon-Verdiraz, and M. Ziyad, “Characterization of active sites of AgHf2(PO4)3 in butan-2-ol conversion,” Microporous Mesoporous Mater. 43, 103–112 (2001).CrossRefGoogle Scholar
  14. 14.
    V. A. Sadykov, S. N. Pavlova, G. V. Zaboltnaya, M. V. Chaikina, R. I. Maksimovskaya, S. V. Tsybulya, E. B. Burgina, V. I. Zaikovskii, G. S. Litvak, Yu. V. Frolova, D. I. Kochubei, V. V. Kriventsov, E. A. Paukshtis, V. N. Kolomiichuk, V. V. Lunin, N. N. Kuznetsova, D. Agraval, and R. Roi, “Scientific bases for the synthesis of highly dispersed framework zirconium phosphate catalysts for paraffin isomerization and selective oxidation,” Kinet. Catal. 42, 390–398 (2001).CrossRefGoogle Scholar
  15. 15.
    M. V. Sukhanov, I. A. Shchelokov, M. M. Ermilova, N. V. Orekhova, V. I. Pet’kov, and G. F. Tereshchenko, “Catalytic properties of sodium zirconium molybdate phosphates in methanol transformations,” Russ. J. Appl. Chem. 81, 17–22 (2008).CrossRefGoogle Scholar
  16. 16.
    E. I. Povarova, A. I. Pylinina, and I. I. Mikhalenko, “Catalytic dehydrogenation of propanol-2 on Na–Zr phosphates containing Cu, Co, and Ni,” Russ. J. Phys. Chem. A 86, 935–941 (2012).CrossRefGoogle Scholar
  17. 17.
    M. M. Ermilova, M. V. Sukhanov, R. S. Borisov, N. V. Orekhova, V. I. Pet’kov, S. A. Novikova, A. B. Il’in, and A. B. Yaroslavtsev, Catal. Today 193, 37–43 (2012).CrossRefGoogle Scholar
  18. 18.
    A. I. Pylinina and I. I. Mikhalenko, “Influence of compensator ions in the anionic part of Na3ZrM(PO4)3 phosphate with M = Zn, Co, Cu on the acidity and catalytic activity in reactions of butanol-2,” Russ. J. Phys. Chem. A 87, 372–375 (2013).CrossRefGoogle Scholar
  19. 19.
    G. F. Tereshchenko, M. M. Ermilova, N. V. Orekhova, A. A. Malygin, and A. I. Orlova, “Nanostructured phosphorus-oxide-containing composite membrane catalysts,” Catal. Today 118, 85–89 (2006).CrossRefGoogle Scholar
  20. 20.
    A. B. Ilin, N. V. Orekhova, M. M. Ermilova, and A. B. Yaroslavtsev, “Catalytic activity of LiZr2(PO4)3 nasicon-type phosphates in ethanol conversion prosess in conventional and membrane reactors,” Catal. Today 286, 29–36 (2016).CrossRefGoogle Scholar
  21. 21.
    A. A. Lytkina, A. B. Il’in, and A. B. Yaroslavtsev, “Study of methanol steam reforming and ethanol conversion in conventional and membrane reactors,” Pet. Chem. 56, 1048–1955 (2016).CrossRefGoogle Scholar
  22. 22.
    A. B. Ilin, N. V. Orekhova, M. M. Ermilova, M. Cretin, and A. B. Yaroslavtsev, “Conversion of aliphatic C1–C2 alcohols on In-, Nb-, Mo-doped complex lithium phosphates and HZr2(PO4)3 with NASICON-type structure,” J. Alloys Compd. 748, 583–590 (2018).CrossRefGoogle Scholar
  23. 23.
    V. K. Diez, C. R. Apesteguia, and J. I. di Cosimo, “Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions,” J. Catal. 215, 220–233 (2003).CrossRefGoogle Scholar
  24. 24.
    R. Issaadi, F. Garin, and C.-E. Chitour, “Study of the acid character of some palladium-modified pillared catalysts: use of isopropanol decomposition as test reaction,” Catal. Today 113, 166–173 (2006).CrossRefGoogle Scholar
  25. 25.
    J. Bedia, R. Ruiz-Rosas, J. Rodrigues-Mirasol, and T. Cordero, “A kinetic study of 2-propanol dehydration on carbon acid catalysts,” J. Catal. 271, 33–42 (2010).CrossRefGoogle Scholar
  26. 26.
    J. Bedia, J. M. Rosas, J. Rodriguez-Mirasol, and T. Cordero, “Isopropanol decomposition on carbon dased acid and basic catalysts,” Catal. Today 158, 89–96 (2010).CrossRefGoogle Scholar
  27. 27.
    V. Lebarbier, M. Houallla, and T. Onfroy, “New insight into the development of Brønsted acidity of niobium acid,” Catal. Today 192, 123–129 (2012).CrossRefGoogle Scholar
  28. 28.
    G. Perez-Lopez, R. Ramirez-Lopez, and T. Viveros, “Acidic properties of Si-and Al-promoted TiO2 catalysts: effect on 2-propanol dehydration activity,” Catal. Today 305, 182–191 (2018).CrossRefGoogle Scholar
  29. 29.
    M. P. Pechini, US Patent No. 3330697A (1967).Google Scholar
  30. 30.
    M. Kakiana and M. Yoshimura, “Synthesis and characterization of complex multicomponent oxides prepared by polymer complex method,” Bull. Chem. Soc. Jpn. 72, 1427–1443 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. B. Ilyin
    • 1
  • M. M. Ermilova
    • 1
  • N. V. Orekhova
    • 1
  • A. B. Yaroslavtsev
    • 1
    • 2
    Email author
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations