Skip to main content
Log in

Influence of Nanocluster Molybdenum Polyoxometalates on the Morphofunctional State of Fibroblasts in Culture

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

For the culture of normal and transformed fibroblasts, the differential effect of two nanoclusters (Мо72Fe30, Мо132) has been shown. The Мо72Fe30 nanocluster is nontoxic to normal fibroblasts, while the Мо132 cluster shows toxicity to normal and transformed fibroblasts. An analysis of the ultrastructure of the cells under the influence of the nanoclusters has demonstrated the specificity of the changes. The dermal fibroblasts are more resistant to the action of Мо72Fe30; the Мо132 cluster causes extensive disorders in the membrane organelles both in normal and transformed fibroblasts. The results confirm the possibility of applying the Мо72Fe30 nanocluster in biomedicine and the use of the Мо132 nanocluster in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, and F. Peters, “Organizational forms of matter: an inorganic superfullerene and keplerate based on molybdenum oxide,” Angew. Chem., Int. Ed. Engl. 37, 3360–3363 (1998).

    Google Scholar 

  2. A. Müller, V. P. Fedin, C. Kuhlmann, H. Bögge, and M. Schmidtmann, “A hydrogen-bonded cluster with ‘onion-type’ structure, encapsulated and induced by a spherical cluster shell: [(H2O)nMoVI 72MoV 60O372(HCO2)30(H2O)72]42-,” Chem. Commun., No. 10, 927–929 (1999).

    Article  Google Scholar 

  3. A. Müller, S. Sarkar, S. Q. N. Shah, H. Bögge, M. Schmidtmann, S. Sarkar, P. Kögerler, B. Hauptfleisch, A. X. Trautwein, and V. Schunemann, “Archimedian synthesis and magic numbers: “Sizing” giant molybdenum—oxide based molecular spheres of the keplerate type,” Angew. Chem., Int. Ed. Engl. 38, 3238–3241 (1999).

    Article  Google Scholar 

  4. A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, M. O. Tonkushina, I. G. Danilova, A. V. Prokof’eva, and M. V. Morozova, “Estimation of safety of ferromolybdenum nanocluster polyoxometalates intended for address delivery of medicines,” Vestn. Ural. Med. Akad. Nauki 34, 107–110 (2011).

    Google Scholar 

  5. A. A. Ostroushko, I. G. Danilova, I. F. Gette, S. Yu.Medvedeva, M. O. Tonkushina, A. V. Prokofieva, and M. V. Morozova, “Study of safety of molybdenum and iron-molybdenum nanocluster polyoxometalates intended for targeter delivery of drugs,” J. Biomater. Nanobiotechnol., No. 2, 557–560 (2011).

    Article  Google Scholar 

  6. A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, I. G. Danilova, E. A. Mukhlynina, M. O. Tonkushina, and M. V. Morozova, “Study of acute and subacute action of iron-molybdenum nanocluster polyoxometalates,” Nanotechnol. Russ. 8, 672–677 (2013).

    Article  Google Scholar 

  7. A. A. Ostroushko, I. G. Danilova, S. Yu. Medvedeva, I. F. Gette, and M. O. Tonkushina, “Studying of safety of molybden nanocluster polyoxometalates intended for address delivery of medicinal substances,” Ural. Med. Zh., No. 9, 114–117 (2010).

    Google Scholar 

  8. A. A. Ostroushko, I. F. Gette, I. G. Danilova, E. A. Mukhlynina, M. O. Tonkushina, and K. V. Grzhegorzhevskii, “Studies on the possibility of introducing iron-molybdenum buckyballs into an organism by electrophoresis,” Nanotechnol. Russ. 9, 577–582 (2014).

    Article  Google Scholar 

  9. A. A. Ostroushko, I. G. Danilova, I. F. Gette, and M. O. Tonkushina, “Behavior of associates of keplerate type porous spherical Mo72Fe30 clusters with metal cations in electric field driven ion transport,” Russ. J. Inorg. Chem. 60, 500–504 (2015).

    Article  Google Scholar 

  10. I. D. Gagarin, A. A. Ostroushko, K. V. Grzhegorzhevskii, and M. O. Tonkushina, “Electrophoretic delivery of Mo72Fe30 nanocluster,” in Proceedings of the 7th International Congress on Nanotechnogy in Medicine and Biology BioNanoMed 2016, Apr. 6–8, 2016, Krems, Austria (Donau Univ., Krems, 2016), p. 23.

    Google Scholar 

  11. A. A. Ostroushko, I. D. Gagarin, M. O. Tonkushina, K. V. Grzhegorzhevskii, I. F. Gette, S. Yu. Medvedeva, E. A. Mukhlynina, M. V. Ulitko, and I. G. Danilova, “Promising means of targeted delivery of medical product on the basis of nanocluster polyoxometalates,” in Proceedings of the 20th Mendeleev Congress on General and Applied Chemistry (Ross. Akad. Nauk, Yekaterinburg, 2016), Vol. 4, p. 511.

    Google Scholar 

  12. I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, A. V. Belousova, M. O. Tonkushina, and A. A. Ostroushko, “Influence of iron-molybdenum nanocluster polyoxometalates on the apoptosis of blood leukocytes and the level of heat-shock proteins in the cells of thymus and spleen in rats,” Nanotechnol. Russ. 11, 653–662 (2016).

    Article  Google Scholar 

  13. T. Yamase, “Polyoxometalates for molecular devices: Antitumor activity and luminescence,” Mol. Eng., No. 3, 241–262 (1993).

    Article  Google Scholar 

  14. T. Yamase, “Antitumoral and antiviral polyoxometalates (inorganic discrete polymer of metal oxide),” in The Polymeric Materials Encyclopedia. Synthesis, Prop erties and Applications, Ed. by J. C. Salamone (CRC, Boca Raton, FL, 1996), Vol. 1, pp. 365–373.

    Google Scholar 

  15. H. Yanagiea, A. Ogatab, S. Mitsui, T. Hisa, T. Yamase, and M. Eriguchi, “Anticancer activity of polyoxomolybdate,” Biomed. Pharm. 60, 349–352 (2006).

    Article  Google Scholar 

  16. I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, E. A. Mukhlynina, M. O. Tonkushina, and A. A. Ostroushko, “Changing the content of histone proteins and heat-shock proteins in the blood and liver of rats after the single and repeated administration of nanocluster iron-molybdenum polyoxometalates,” Nanotechnol. Russ. 10, 820–826 (2015).

    Article  Google Scholar 

  17. A. A. Ostroushko, M. O. Tonkushina, V. Yu. Korotaev, A. V. Prokof’eva, I. B. Kutyashev, V. A. Vazhenin, I. G. Danilova, and S. Yu. Men’shikov, “Stability of the Mo72Fe30 polyoxometalate buckyball in solution,” Russ. J. Inorg. Chem. 57, 1210–1213 (2012).

    Article  Google Scholar 

  18. A. A. Ostroushko and M. O. Tonkushina, “Destruction of molybdenum nanocluster polyoxometallates in aqueous solutions,” Russ. J. Phys. Chem. A 89, 443–446 (2015).

    Article  Google Scholar 

  19. M. L. Kistler, T. Liu, P. Gouzerh, A. M. Todea, and A. Müller, “Molybdenum-oxide based unique polyprotic nanoacids showing different deprotonations and related assembly processes in solution,” Dalton Trans., 5094–5100 (2009).

    Google Scholar 

  20. M. V. Berridge, P. M. Herst, and A. S. Tan, “Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction,” Biotechnol. Ann. Rev. 11, 127–152 (2005).

    Article  Google Scholar 

  21. H. Tominaga, M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hamamoto, K. Suzuki, and M. Watanabe, “A watersoluble tetrazolium salt useful for colorimetric cell viability assay,” Anal. Commun. 36, 47–50 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Danilova.

Additional information

Original Russian Text © A.A. Ostroushko, M.V. Ulitko, M.O. Tonkushina, I.V. Zubarev, S.Yu. Medvedeva, I.G. Danilova, O.V. Gubaeva, I.D. Gagarin, I.F. Gette, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostroushko, A.A., Ulitko, M.V., Tonkushina, M.O. et al. Influence of Nanocluster Molybdenum Polyoxometalates on the Morphofunctional State of Fibroblasts in Culture. Nanotechnol Russia 13, 1–10 (2018). https://doi.org/10.1134/S199507801801010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801801010X

Navigation